diff --git a/arch/s390/mm/fault.c b/arch/s390/mm/fault.c
index cce577feab1e9998f5e1b29e6011e70e8db075fe..7a31440173016e8cf0281deda2f81774975d80d1 100644
--- a/arch/s390/mm/fault.c
+++ b/arch/s390/mm/fault.c
@@ -631,6 +631,29 @@ void pfault_fini(void)
 static DEFINE_SPINLOCK(pfault_lock);
 static LIST_HEAD(pfault_list);
 
+#define PF_COMPLETE	0x0080
+
+/*
+ * The mechanism of our pfault code: if Linux is running as guest, runs a user
+ * space process and the user space process accesses a page that the host has
+ * paged out we get a pfault interrupt.
+ *
+ * This allows us, within the guest, to schedule a different process. Without
+ * this mechanism the host would have to suspend the whole virtual cpu until
+ * the page has been paged in.
+ *
+ * So when we get such an interrupt then we set the state of the current task
+ * to uninterruptible and also set the need_resched flag. Both happens within
+ * interrupt context(!). If we later on want to return to user space we
+ * recognize the need_resched flag and then call schedule().  It's not very
+ * obvious how this works...
+ *
+ * Of course we have a lot of additional fun with the completion interrupt (->
+ * host signals that a page of a process has been paged in and the process can
+ * continue to run). This interrupt can arrive on any cpu and, since we have
+ * virtual cpus, actually appear before the interrupt that signals that a page
+ * is missing.
+ */
 static void pfault_interrupt(struct ext_code ext_code,
 			     unsigned int param32, unsigned long param64)
 {
@@ -639,10 +662,9 @@ static void pfault_interrupt(struct ext_code ext_code,
 	pid_t pid;
 
 	/*
-	 * Get the external interruption subcode & pfault
-	 * initial/completion signal bit. VM stores this 
-	 * in the 'cpu address' field associated with the
-         * external interrupt. 
+	 * Get the external interruption subcode & pfault initial/completion
+	 * signal bit. VM stores this in the 'cpu address' field associated
+	 * with the external interrupt.
 	 */
 	subcode = ext_code.subcode;
 	if ((subcode & 0xff00) != __SUBCODE_MASK)
@@ -658,7 +680,7 @@ static void pfault_interrupt(struct ext_code ext_code,
 	if (!tsk)
 		return;
 	spin_lock(&pfault_lock);
-	if (subcode & 0x0080) {
+	if (subcode & PF_COMPLETE) {
 		/* signal bit is set -> a page has been swapped in by VM */
 		if (tsk->thread.pfault_wait == 1) {
 			/* Initial interrupt was faster than the completion
@@ -687,8 +709,7 @@ static void pfault_interrupt(struct ext_code ext_code,
 			goto out;
 		if (tsk->thread.pfault_wait == 1) {
 			/* Already on the list with a reference: put to sleep */
-			__set_task_state(tsk, TASK_UNINTERRUPTIBLE);
-			set_tsk_need_resched(tsk);
+			goto block;
 		} else if (tsk->thread.pfault_wait == -1) {
 			/* Completion interrupt was faster than the initial
 			 * interrupt (pfault_wait == -1). Set pfault_wait
@@ -703,7 +724,11 @@ static void pfault_interrupt(struct ext_code ext_code,
 			get_task_struct(tsk);
 			tsk->thread.pfault_wait = 1;
 			list_add(&tsk->thread.list, &pfault_list);
-			__set_task_state(tsk, TASK_UNINTERRUPTIBLE);
+block:
+			/* Since this must be a userspace fault, there
+			 * is no kernel task state to trample. Rely on the
+			 * return to userspace schedule() to block. */
+			__set_current_state(TASK_UNINTERRUPTIBLE);
 			set_tsk_need_resched(tsk);
 		}
 	}