diff --git a/Documentation/kernel-hacking/false-sharing.rst b/Documentation/kernel-hacking/false-sharing.rst
new file mode 100644
index 0000000000000000000000000000000000000000..122b0e12465615a96a71ae65d881166eabcd07b1
--- /dev/null
+++ b/Documentation/kernel-hacking/false-sharing.rst
@@ -0,0 +1,206 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============
+False Sharing
+=============
+
+What is False Sharing
+=====================
+False sharing is related with cache mechanism of maintaining the data
+coherence of one cache line stored in multiple CPU's caches; then
+academic definition for it is in [1]_. Consider a struct with a
+refcount and a string::
+
+	struct foo {
+		refcount_t refcount;
+		...
+		char name[16];
+	} ____cacheline_internodealigned_in_smp;
+
+Member 'refcount'(A) and 'name'(B) _share_ one cache line like below::
+
+                +-----------+                     +-----------+
+                |   CPU 0   |                     |   CPU 1   |
+                +-----------+                     +-----------+
+               /                                        |
+              /                                         |
+             V                                          V
+         +----------------------+             +----------------------+
+         | A      B             | Cache 0     | A       B            | Cache 1
+         +----------------------+             +----------------------+
+                             |                  |
+  ---------------------------+------------------+-----------------------------
+                             |                  |
+                           +----------------------+
+                           |                      |
+                           +----------------------+
+              Main Memory  | A       B            |
+                           +----------------------+
+
+'refcount' is modified frequently, but 'name' is set once at object
+creation time and is never modified.  When many CPUs access 'foo' at
+the same time, with 'refcount' being only bumped by one CPU frequently
+and 'name' being read by other CPUs, all those reading CPUs have to
+reload the whole cache line over and over due to the 'sharing', even
+though 'name' is never changed.
+
+There are many real-world cases of performance regressions caused by
+false sharing.  One of these is a rw_semaphore 'mmap_lock' inside
+mm_struct struct, whose cache line layout change triggered a
+regression and Linus analyzed in [2]_.
+
+There are two key factors for a harmful false sharing:
+
+* A global datum accessed (shared) by many CPUs
+* In the concurrent accesses to the data, there is at least one write
+  operation: write/write or write/read cases.
+
+The sharing could be from totally unrelated kernel components, or
+different code paths of the same kernel component.
+
+
+False Sharing Pitfalls
+======================
+Back in time when one platform had only one or a few CPUs, hot data
+members could be purposely put in the same cache line to make them
+cache hot and save cacheline/TLB, like a lock and the data protected
+by it.  But for recent large system with hundreds of CPUs, this may
+not work when the lock is heavily contended, as the lock owner CPU
+could write to the data, while other CPUs are busy spinning the lock.
+
+Looking at past cases, there are several frequently occurring patterns
+for false sharing:
+
+* lock (spinlock/mutex/semaphore) and data protected by it are
+  purposely put in one cache line.
+* global data being put together in one cache line. Some kernel
+  subsystems have many global parameters of small size (4 bytes),
+  which can easily be grouped together and put into one cache line.
+* data members of a big data structure randomly sitting together
+  without being noticed (cache line is usually 64 bytes or more),
+  like 'mem_cgroup' struct.
+
+Following 'mitigation' section provides real-world examples.
+
+False sharing could easily happen unless they are intentionally
+checked, and it is valuable to run specific tools for performance
+critical workloads to detect false sharing affecting performance case
+and optimize accordingly.
+
+
+How to detect and analyze False Sharing
+========================================
+perf record/report/stat are widely used for performance tuning, and
+once hotspots are detected, tools like 'perf-c2c' and 'pahole' can
+be further used to detect and pinpoint the possible false sharing
+data structures.  'addr2line' is also good at decoding instruction
+pointer when there are multiple layers of inline functions.
+
+perf-c2c can capture the cache lines with most false sharing hits,
+decoded functions (line number of file) accessing that cache line,
+and in-line offset of the data. Simple commands are::
+
+  $ perf c2c record -ag sleep 3
+  $ perf c2c report --call-graph none -k vmlinux
+
+When running above during testing will-it-scale's tlb_flush1 case,
+perf reports something like::
+
+  Total records                     :    1658231
+  Locked Load/Store Operations      :      89439
+  Load Operations                   :     623219
+  Load Local HITM                   :      92117
+  Load Remote HITM                  :        139
+
+  #----------------------------------------------------------------------
+      4        0     2374        0        0        0  0xff1100088366d880
+  #----------------------------------------------------------------------
+    0.00%   42.29%    0.00%    0.00%    0.00%    0x8     1       1  0xffffffff81373b7b         0       231       129     5312        64  [k] __mod_lruvec_page_state    [kernel.vmlinux]  memcontrol.h:752   1
+    0.00%   13.10%    0.00%    0.00%    0.00%    0x8     1       1  0xffffffff81374718         0       226        97     3551        64  [k] folio_lruvec_lock_irqsave  [kernel.vmlinux]  memcontrol.h:752   1
+    0.00%   11.20%    0.00%    0.00%    0.00%    0x8     1       1  0xffffffff812c29bf         0       170       136      555        64  [k] lru_add_fn                 [kernel.vmlinux]  mm_inline.h:41     1
+    0.00%    7.62%    0.00%    0.00%    0.00%    0x8     1       1  0xffffffff812c3ec5         0       175       108      632        64  [k] release_pages              [kernel.vmlinux]  mm_inline.h:41     1
+    0.00%   23.29%    0.00%    0.00%    0.00%   0x10     1       1  0xffffffff81372d0a         0       234       279     1051        64  [k] __mod_memcg_lruvec_state   [kernel.vmlinux]  memcontrol.c:736   1
+
+A nice introduction for perf-c2c is [3]_.
+
+'pahole' decodes data structure layouts delimited in cache line
+granularity.  Users can match the offset in perf-c2c output with
+pahole's decoding to locate the exact data members.  For global
+data, users can search the data address in System.map.
+
+
+Possible Mitigations
+====================
+False sharing does not always need to be mitigated.  False sharing
+mitigations should balance performance gains with complexity and
+space consumption.  Sometimes, lower performance is OK, and it's
+unnecessary to hyper-optimize every rarely used data structure or
+a cold data path.
+
+False sharing hurting performance cases are seen more frequently with
+core count increasing.  Because of these detrimental effects, many
+patches have been proposed across variety of subsystems (like
+networking and memory management) and merged.  Some common mitigations
+(with examples) are:
+
+* Separate hot global data in its own dedicated cache line, even if it
+  is just a 'short' type. The downside is more consumption of memory,
+  cache line and TLB entries.
+
+  - Commit 91b6d3256356 ("net: cache align tcp_memory_allocated, tcp_sockets_allocated")
+
+* Reorganize the data structure, separate the interfering members to
+  different cache lines.  One downside is it may introduce new false
+  sharing of other members.
+
+  - Commit 802f1d522d5f ("mm: page_counter: re-layout structure to reduce false sharing")
+
+* Replace 'write' with 'read' when possible, especially in loops.
+  Like for some global variable, use compare(read)-then-write instead
+  of unconditional write. For example, use::
+
+	if (!test_bit(XXX))
+		set_bit(XXX);
+
+  instead of directly "set_bit(XXX);", similarly for atomic_t data::
+
+	if (atomic_read(XXX) == AAA)
+		atomic_set(XXX, BBB);
+
+  - Commit 7b1002f7cfe5 ("bcache: fixup bcache_dev_sectors_dirty_add() multithreaded CPU false sharing")
+  - Commit 292648ac5cf1 ("mm: gup: allow FOLL_PIN to scale in SMP")
+
+* Turn hot global data to 'per-cpu data + global data' when possible,
+  or reasonably increase the threshold for syncing per-cpu data to
+  global data, to reduce or postpone the 'write' to that global data.
+
+  - Commit 520f897a3554 ("ext4: use percpu_counters for extent_status cache hits/misses")
+  - Commit 56f3547bfa4d ("mm: adjust vm_committed_as_batch according to vm overcommit policy")
+
+Surely, all mitigations should be carefully verified to not cause side
+effects.  To avoid introducing false sharing when coding, it's better
+to:
+
+* Be aware of cache line boundaries
+* Group mostly read-only fields together
+* Group things that are written at the same time together
+* Separate frequently read and frequently written fields on
+  different cache lines.
+
+and better add a comment stating the false sharing consideration.
+
+One note is, sometimes even after a severe false sharing is detected
+and solved, the performance may still have no obvious improvement as
+the hotspot switches to a new place.
+
+
+Miscellaneous
+=============
+One open issue is that kernel has an optional data structure
+randomization mechanism, which also randomizes the situation of cache
+line sharing of data members.
+
+
+.. [1] https://en.wikipedia.org/wiki/False_sharing
+.. [2] https://lore.kernel.org/lkml/CAHk-=whoqV=cX5VC80mmR9rr+Z+yQ6fiQZm36Fb-izsanHg23w@mail.gmail.com/
+.. [3] https://joemario.github.io/blog/2016/09/01/c2c-blog/
diff --git a/Documentation/kernel-hacking/index.rst b/Documentation/kernel-hacking/index.rst
index f530276522904c1ddd4db4655f399c5d02ed696a..79c03bac99a294bf005041100bf15d1fd64943cc 100644
--- a/Documentation/kernel-hacking/index.rst
+++ b/Documentation/kernel-hacking/index.rst
@@ -9,3 +9,4 @@ Kernel Hacking Guides
 
    hacking
    locking
+   false-sharing