diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c
index 36098226a95731b5f91a2f2ab156bb9e25716aca..96d34ebb20a9e1e09e3a9e8eaf41f464a264d87e 100644
--- a/arch/x86/mm/init_64.c
+++ b/arch/x86/mm/init_64.c
@@ -981,7 +981,7 @@ static void __meminit free_pagetable(struct page *page, int order)
 	if (PageReserved(page)) {
 		__ClearPageReserved(page);
 
-		magic = (unsigned long)page->freelist;
+		magic = page->index;
 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
 			while (nr_pages--)
 				put_page_bootmem(page++);
diff --git a/include/linux/bootmem_info.h b/include/linux/bootmem_info.h
index 2bc8b1f69c93cbff94520d98a3e15302bc87f367..cc35d010fa949cace2d060b9c9e43d8bc794f2b4 100644
--- a/include/linux/bootmem_info.h
+++ b/include/linux/bootmem_info.h
@@ -30,7 +30,7 @@ void put_page_bootmem(struct page *page);
  */
 static inline void free_bootmem_page(struct page *page)
 {
-	unsigned long magic = (unsigned long)page->freelist;
+	unsigned long magic = page->index;
 
 	/*
 	 * The reserve_bootmem_region sets the reserved flag on bootmem
diff --git a/include/linux/kasan.h b/include/linux/kasan.h
index d8783b68266957a5ddde5f0d2fb28bbcec355a2e..fb78108d694e7f0d98c703445ed83d2538467fa0 100644
--- a/include/linux/kasan.h
+++ b/include/linux/kasan.h
@@ -9,6 +9,7 @@
 
 struct kmem_cache;
 struct page;
+struct slab;
 struct vm_struct;
 struct task_struct;
 
@@ -193,11 +194,11 @@ static __always_inline size_t kasan_metadata_size(struct kmem_cache *cache)
 	return 0;
 }
 
-void __kasan_poison_slab(struct page *page);
-static __always_inline void kasan_poison_slab(struct page *page)
+void __kasan_poison_slab(struct slab *slab);
+static __always_inline void kasan_poison_slab(struct slab *slab)
 {
 	if (kasan_enabled())
-		__kasan_poison_slab(page);
+		__kasan_poison_slab(slab);
 }
 
 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object);
@@ -322,7 +323,7 @@ static inline void kasan_cache_create(struct kmem_cache *cache,
 				      slab_flags_t *flags) {}
 static inline void kasan_cache_create_kmalloc(struct kmem_cache *cache) {}
 static inline size_t kasan_metadata_size(struct kmem_cache *cache) { return 0; }
-static inline void kasan_poison_slab(struct page *page) {}
+static inline void kasan_poison_slab(struct slab *slab) {}
 static inline void kasan_unpoison_object_data(struct kmem_cache *cache,
 					void *object) {}
 static inline void kasan_poison_object_data(struct kmem_cache *cache,
diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
index 0c5c403f4be6ba111600fad90cda0862b2a216da..e34112f6a36918e77131c562f1ae50315fe42bf3 100644
--- a/include/linux/memcontrol.h
+++ b/include/linux/memcontrol.h
@@ -536,45 +536,6 @@ static inline bool folio_memcg_kmem(struct folio *folio)
 	return folio->memcg_data & MEMCG_DATA_KMEM;
 }
 
-/*
- * page_objcgs - get the object cgroups vector associated with a page
- * @page: a pointer to the page struct
- *
- * Returns a pointer to the object cgroups vector associated with the page,
- * or NULL. This function assumes that the page is known to have an
- * associated object cgroups vector. It's not safe to call this function
- * against pages, which might have an associated memory cgroup: e.g.
- * kernel stack pages.
- */
-static inline struct obj_cgroup **page_objcgs(struct page *page)
-{
-	unsigned long memcg_data = READ_ONCE(page->memcg_data);
-
-	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
-	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
-
-	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
-}
-
-/*
- * page_objcgs_check - get the object cgroups vector associated with a page
- * @page: a pointer to the page struct
- *
- * Returns a pointer to the object cgroups vector associated with the page,
- * or NULL. This function is safe to use if the page can be directly associated
- * with a memory cgroup.
- */
-static inline struct obj_cgroup **page_objcgs_check(struct page *page)
-{
-	unsigned long memcg_data = READ_ONCE(page->memcg_data);
-
-	if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
-		return NULL;
-
-	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
-
-	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
-}
 
 #else
 static inline bool folio_memcg_kmem(struct folio *folio)
@@ -582,15 +543,6 @@ static inline bool folio_memcg_kmem(struct folio *folio)
 	return false;
 }
 
-static inline struct obj_cgroup **page_objcgs(struct page *page)
-{
-	return NULL;
-}
-
-static inline struct obj_cgroup **page_objcgs_check(struct page *page)
-{
-	return NULL;
-}
 #endif
 
 static inline bool PageMemcgKmem(struct page *page)
diff --git a/include/linux/mm.h b/include/linux/mm.h
index a7e4a9e7d807a39bc549bcfc7238e03c4e7237bd..4a6cf22483daca31f3e5d1e268060718c6d23ceb 100644
--- a/include/linux/mm.h
+++ b/include/linux/mm.h
@@ -863,6 +863,13 @@ static inline struct page *virt_to_head_page(const void *x)
 	return compound_head(page);
 }
 
+static inline struct folio *virt_to_folio(const void *x)
+{
+	struct page *page = virt_to_page(x);
+
+	return page_folio(page);
+}
+
 void __put_page(struct page *page);
 
 void put_pages_list(struct list_head *pages);
@@ -1753,6 +1760,11 @@ void page_address_init(void);
 #define page_address_init()  do { } while(0)
 #endif
 
+static inline void *folio_address(const struct folio *folio)
+{
+	return page_address(&folio->page);
+}
+
 extern void *page_rmapping(struct page *page);
 extern struct anon_vma *page_anon_vma(struct page *page);
 extern pgoff_t __page_file_index(struct page *page);
diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h
index c3a6e620960068cddb7818e1a39fac924bfd91fe..1ae3537c792072deecba06b445367fb3773d696f 100644
--- a/include/linux/mm_types.h
+++ b/include/linux/mm_types.h
@@ -56,11 +56,11 @@ struct mem_cgroup;
  * in each subpage, but you may need to restore some of their values
  * afterwards.
  *
- * SLUB uses cmpxchg_double() to atomically update its freelist and
- * counters.  That requires that freelist & counters be adjacent and
- * double-word aligned.  We align all struct pages to double-word
- * boundaries, and ensure that 'freelist' is aligned within the
- * struct.
+ * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
+ * That requires that freelist & counters in struct slab be adjacent and
+ * double-word aligned. Because struct slab currently just reinterprets the
+ * bits of struct page, we align all struct pages to double-word boundaries,
+ * and ensure that 'freelist' is aligned within struct slab.
  */
 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
diff --git a/include/linux/slab.h b/include/linux/slab.h
index 181045148b0654eae388e9c747c53a60ec4abc8a..367366f1d1ff85052a7785e1c85f837f7cdb46cf 100644
--- a/include/linux/slab.h
+++ b/include/linux/slab.h
@@ -189,14 +189,6 @@ bool kmem_valid_obj(void *object);
 void kmem_dump_obj(void *object);
 #endif
 
-#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
-void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
-			bool to_user);
-#else
-static inline void __check_heap_object(const void *ptr, unsigned long n,
-				       struct page *page, bool to_user) { }
-#endif
-
 /*
  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  * alignment larger than the alignment of a 64-bit integer.
diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h
index 3aa5e1e73ab66f9150f0d4b52e1c2226f92c1a34..e24c9aff6fed0cdc8abefabc97f0acbf1bf1f01c 100644
--- a/include/linux/slab_def.h
+++ b/include/linux/slab_def.h
@@ -87,11 +87,11 @@ struct kmem_cache {
 	struct kmem_cache_node *node[MAX_NUMNODES];
 };
 
-static inline void *nearest_obj(struct kmem_cache *cache, struct page *page,
+static inline void *nearest_obj(struct kmem_cache *cache, const struct slab *slab,
 				void *x)
 {
-	void *object = x - (x - page->s_mem) % cache->size;
-	void *last_object = page->s_mem + (cache->num - 1) * cache->size;
+	void *object = x - (x - slab->s_mem) % cache->size;
+	void *last_object = slab->s_mem + (cache->num - 1) * cache->size;
 
 	if (unlikely(object > last_object))
 		return last_object;
@@ -106,16 +106,16 @@ static inline void *nearest_obj(struct kmem_cache *cache, struct page *page,
  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
  */
 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
-					const struct page *page, void *obj)
+					const struct slab *slab, void *obj)
 {
-	u32 offset = (obj - page->s_mem);
+	u32 offset = (obj - slab->s_mem);
 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 }
 
-static inline int objs_per_slab_page(const struct kmem_cache *cache,
-				     const struct page *page)
+static inline int objs_per_slab(const struct kmem_cache *cache,
+				     const struct slab *slab)
 {
-	if (is_kfence_address(page_address(page)))
+	if (is_kfence_address(slab_address(slab)))
 		return 1;
 	return cache->num;
 }
diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h
index 0fa751b946fa0b93e7e011039fee4ad9e4db048a..33c5c0e3bd8d9780af0a921aba001ff37a6c126b 100644
--- a/include/linux/slub_def.h
+++ b/include/linux/slub_def.h
@@ -48,9 +48,9 @@ enum stat_item {
 struct kmem_cache_cpu {
 	void **freelist;	/* Pointer to next available object */
 	unsigned long tid;	/* Globally unique transaction id */
-	struct page *page;	/* The slab from which we are allocating */
+	struct slab *slab;	/* The slab from which we are allocating */
 #ifdef CONFIG_SLUB_CPU_PARTIAL
-	struct page *partial;	/* Partially allocated frozen slabs */
+	struct slab *partial;	/* Partially allocated frozen slabs */
 #endif
 	local_lock_t lock;	/* Protects the fields above */
 #ifdef CONFIG_SLUB_STATS
@@ -99,8 +99,8 @@ struct kmem_cache {
 #ifdef CONFIG_SLUB_CPU_PARTIAL
 	/* Number of per cpu partial objects to keep around */
 	unsigned int cpu_partial;
-	/* Number of per cpu partial pages to keep around */
-	unsigned int cpu_partial_pages;
+	/* Number of per cpu partial slabs to keep around */
+	unsigned int cpu_partial_slabs;
 #endif
 	struct kmem_cache_order_objects oo;
 
@@ -156,16 +156,13 @@ static inline void sysfs_slab_release(struct kmem_cache *s)
 }
 #endif
 
-void object_err(struct kmem_cache *s, struct page *page,
-		u8 *object, char *reason);
-
 void *fixup_red_left(struct kmem_cache *s, void *p);
 
-static inline void *nearest_obj(struct kmem_cache *cache, struct page *page,
+static inline void *nearest_obj(struct kmem_cache *cache, const struct slab *slab,
 				void *x) {
-	void *object = x - (x - page_address(page)) % cache->size;
-	void *last_object = page_address(page) +
-		(page->objects - 1) * cache->size;
+	void *object = x - (x - slab_address(slab)) % cache->size;
+	void *last_object = slab_address(slab) +
+		(slab->objects - 1) * cache->size;
 	void *result = (unlikely(object > last_object)) ? last_object : object;
 
 	result = fixup_red_left(cache, result);
@@ -181,16 +178,16 @@ static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
 }
 
 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
-					const struct page *page, void *obj)
+					const struct slab *slab, void *obj)
 {
 	if (is_kfence_address(obj))
 		return 0;
-	return __obj_to_index(cache, page_address(page), obj);
+	return __obj_to_index(cache, slab_address(slab), obj);
 }
 
-static inline int objs_per_slab_page(const struct kmem_cache *cache,
-				     const struct page *page)
+static inline int objs_per_slab(const struct kmem_cache *cache,
+				     const struct slab *slab)
 {
-	return page->objects;
+	return slab->objects;
 }
 #endif /* _LINUX_SLUB_DEF_H */
diff --git a/mm/bootmem_info.c b/mm/bootmem_info.c
index f03f42f426f69fd626db8d751e15832f1e6da353..f18a631e74797b1f7c5902cca59a8e49a5f603d1 100644
--- a/mm/bootmem_info.c
+++ b/mm/bootmem_info.c
@@ -15,7 +15,7 @@
 
 void get_page_bootmem(unsigned long info, struct page *page, unsigned long type)
 {
-	page->freelist = (void *)type;
+	page->index = type;
 	SetPagePrivate(page);
 	set_page_private(page, info);
 	page_ref_inc(page);
@@ -23,14 +23,13 @@ void get_page_bootmem(unsigned long info, struct page *page, unsigned long type)
 
 void put_page_bootmem(struct page *page)
 {
-	unsigned long type;
+	unsigned long type = page->index;
 
-	type = (unsigned long) page->freelist;
 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 
 	if (page_ref_dec_return(page) == 1) {
-		page->freelist = NULL;
+		page->index = 0;
 		ClearPagePrivate(page);
 		set_page_private(page, 0);
 		INIT_LIST_HEAD(&page->lru);
diff --git a/mm/kasan/common.c b/mm/kasan/common.c
index 8428da2aaf173e5337a37b204cba0641d80a1a01..7c06db78a76cb559d0c8932ab5f7e79c8756a4fe 100644
--- a/mm/kasan/common.c
+++ b/mm/kasan/common.c
@@ -247,8 +247,9 @@ struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
 }
 #endif
 
-void __kasan_poison_slab(struct page *page)
+void __kasan_poison_slab(struct slab *slab)
 {
+	struct page *page = slab_page(slab);
 	unsigned long i;
 
 	for (i = 0; i < compound_nr(page); i++)
@@ -298,7 +299,7 @@ static inline u8 assign_tag(struct kmem_cache *cache,
 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
 #ifdef CONFIG_SLAB
 	/* For SLAB assign tags based on the object index in the freelist. */
-	return (u8)obj_to_index(cache, virt_to_head_page(object), (void *)object);
+	return (u8)obj_to_index(cache, virt_to_slab(object), (void *)object);
 #else
 	/*
 	 * For SLUB assign a random tag during slab creation, otherwise reuse
@@ -341,7 +342,7 @@ static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
 	if (is_kfence_address(object))
 		return false;
 
-	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
+	if (unlikely(nearest_obj(cache, virt_to_slab(object), object) !=
 	    object)) {
 		kasan_report_invalid_free(tagged_object, ip);
 		return true;
@@ -401,9 +402,9 @@ void __kasan_kfree_large(void *ptr, unsigned long ip)
 
 void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
 {
-	struct page *page;
+	struct folio *folio;
 
-	page = virt_to_head_page(ptr);
+	folio = virt_to_folio(ptr);
 
 	/*
 	 * Even though this function is only called for kmem_cache_alloc and
@@ -411,12 +412,14 @@ void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
 	 * !PageSlab() when the size provided to kmalloc is larger than
 	 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
 	 */
-	if (unlikely(!PageSlab(page))) {
+	if (unlikely(!folio_test_slab(folio))) {
 		if (____kasan_kfree_large(ptr, ip))
 			return;
-		kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE, false);
+		kasan_poison(ptr, folio_size(folio), KASAN_FREE_PAGE, false);
 	} else {
-		____kasan_slab_free(page->slab_cache, ptr, ip, false, false);
+		struct slab *slab = folio_slab(folio);
+
+		____kasan_slab_free(slab->slab_cache, ptr, ip, false, false);
 	}
 }
 
@@ -560,7 +563,7 @@ void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
 
 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
 {
-	struct page *page;
+	struct slab *slab;
 
 	if (unlikely(object == ZERO_SIZE_PTR))
 		return (void *)object;
@@ -572,13 +575,13 @@ void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flag
 	 */
 	kasan_unpoison(object, size, false);
 
-	page = virt_to_head_page(object);
+	slab = virt_to_slab(object);
 
 	/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
-	if (unlikely(!PageSlab(page)))
+	if (unlikely(!slab))
 		return __kasan_kmalloc_large(object, size, flags);
 	else
-		return ____kasan_kmalloc(page->slab_cache, object, size, flags);
+		return ____kasan_kmalloc(slab->slab_cache, object, size, flags);
 }
 
 bool __kasan_check_byte(const void *address, unsigned long ip)
diff --git a/mm/kasan/generic.c b/mm/kasan/generic.c
index 84a038b07c6fe06c43713969cb041e330bee9951..a25ad40906154e35075c470a2ee86a1059763b26 100644
--- a/mm/kasan/generic.c
+++ b/mm/kasan/generic.c
@@ -330,16 +330,16 @@ DEFINE_ASAN_SET_SHADOW(f8);
 
 static void __kasan_record_aux_stack(void *addr, bool can_alloc)
 {
-	struct page *page = kasan_addr_to_page(addr);
+	struct slab *slab = kasan_addr_to_slab(addr);
 	struct kmem_cache *cache;
 	struct kasan_alloc_meta *alloc_meta;
 	void *object;
 
-	if (is_kfence_address(addr) || !(page && PageSlab(page)))
+	if (is_kfence_address(addr) || !slab)
 		return;
 
-	cache = page->slab_cache;
-	object = nearest_obj(cache, page, addr);
+	cache = slab->slab_cache;
+	object = nearest_obj(cache, slab, addr);
 	alloc_meta = kasan_get_alloc_meta(cache, object);
 	if (!alloc_meta)
 		return;
diff --git a/mm/kasan/kasan.h b/mm/kasan/kasan.h
index aebd8df86a1f2770b8caff0f61cbb9edf09ca0fe..c17fa8d26ffe5c15c1d6fb0219c854e84267dfdc 100644
--- a/mm/kasan/kasan.h
+++ b/mm/kasan/kasan.h
@@ -265,6 +265,7 @@ bool kasan_report(unsigned long addr, size_t size,
 void kasan_report_invalid_free(void *object, unsigned long ip);
 
 struct page *kasan_addr_to_page(const void *addr);
+struct slab *kasan_addr_to_slab(const void *addr);
 
 depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc);
 void kasan_set_track(struct kasan_track *track, gfp_t flags);
diff --git a/mm/kasan/quarantine.c b/mm/kasan/quarantine.c
index d8ccff4c1275ec7a7f8081141c2baee8e4798af2..587da8995f2d9b4a9ade1536411c605b37fba7ac 100644
--- a/mm/kasan/quarantine.c
+++ b/mm/kasan/quarantine.c
@@ -117,7 +117,7 @@ static unsigned long quarantine_batch_size;
 
 static struct kmem_cache *qlink_to_cache(struct qlist_node *qlink)
 {
-	return virt_to_head_page(qlink)->slab_cache;
+	return virt_to_slab(qlink)->slab_cache;
 }
 
 static void *qlink_to_object(struct qlist_node *qlink, struct kmem_cache *cache)
diff --git a/mm/kasan/report.c b/mm/kasan/report.c
index 0bc10f452f7e36df9a588dcc166922a00f98b22b..3ad9624dcc56194d58ad744312148097bfd5a44a 100644
--- a/mm/kasan/report.c
+++ b/mm/kasan/report.c
@@ -150,6 +150,14 @@ struct page *kasan_addr_to_page(const void *addr)
 	return NULL;
 }
 
+struct slab *kasan_addr_to_slab(const void *addr)
+{
+	if ((addr >= (void *)PAGE_OFFSET) &&
+			(addr < high_memory))
+		return virt_to_slab(addr);
+	return NULL;
+}
+
 static void describe_object_addr(struct kmem_cache *cache, void *object,
 				const void *addr)
 {
@@ -248,8 +256,9 @@ static void print_address_description(void *addr, u8 tag)
 	pr_err("\n");
 
 	if (page && PageSlab(page)) {
-		struct kmem_cache *cache = page->slab_cache;
-		void *object = nearest_obj(cache, page,	addr);
+		struct slab *slab = page_slab(page);
+		struct kmem_cache *cache = slab->slab_cache;
+		void *object = nearest_obj(cache, slab,	addr);
 
 		describe_object(cache, object, addr, tag);
 	}
diff --git a/mm/kasan/report_tags.c b/mm/kasan/report_tags.c
index 8a319fc16dab9742606c78099e774697c416bcca..1b41de88c53ebe2b413ce57be999aa37023cf8bb 100644
--- a/mm/kasan/report_tags.c
+++ b/mm/kasan/report_tags.c
@@ -12,7 +12,7 @@ const char *kasan_get_bug_type(struct kasan_access_info *info)
 #ifdef CONFIG_KASAN_TAGS_IDENTIFY
 	struct kasan_alloc_meta *alloc_meta;
 	struct kmem_cache *cache;
-	struct page *page;
+	struct slab *slab;
 	const void *addr;
 	void *object;
 	u8 tag;
@@ -20,10 +20,10 @@ const char *kasan_get_bug_type(struct kasan_access_info *info)
 
 	tag = get_tag(info->access_addr);
 	addr = kasan_reset_tag(info->access_addr);
-	page = kasan_addr_to_page(addr);
-	if (page && PageSlab(page)) {
-		cache = page->slab_cache;
-		object = nearest_obj(cache, page, (void *)addr);
+	slab = kasan_addr_to_slab(addr);
+	if (slab) {
+		cache = slab->slab_cache;
+		object = nearest_obj(cache, slab, (void *)addr);
 		alloc_meta = kasan_get_alloc_meta(cache, object);
 
 		if (alloc_meta) {
diff --git a/mm/kfence/core.c b/mm/kfence/core.c
index 09945784df9e656171b0dc40bb023f7ced26fad3..267dfde43b91366e392014d448594bfe8483b7ba 100644
--- a/mm/kfence/core.c
+++ b/mm/kfence/core.c
@@ -360,7 +360,7 @@ static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t g
 {
 	struct kfence_metadata *meta = NULL;
 	unsigned long flags;
-	struct page *page;
+	struct slab *slab;
 	void *addr;
 
 	/* Try to obtain a free object. */
@@ -424,13 +424,14 @@ static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t g
 
 	alloc_covered_add(alloc_stack_hash, 1);
 
-	/* Set required struct page fields. */
-	page = virt_to_page(meta->addr);
-	page->slab_cache = cache;
-	if (IS_ENABLED(CONFIG_SLUB))
-		page->objects = 1;
-	if (IS_ENABLED(CONFIG_SLAB))
-		page->s_mem = addr;
+	/* Set required slab fields. */
+	slab = virt_to_slab((void *)meta->addr);
+	slab->slab_cache = cache;
+#if defined(CONFIG_SLUB)
+	slab->objects = 1;
+#elif defined(CONFIG_SLAB)
+	slab->s_mem = addr;
+#endif
 
 	/* Memory initialization. */
 	for_each_canary(meta, set_canary_byte);
diff --git a/mm/kfence/kfence_test.c b/mm/kfence/kfence_test.c
index 695030c1fff8bba00cd54140f55f89bf64ac2917..a22b1af85577d69b9df1f404a010eec6df4d000a 100644
--- a/mm/kfence/kfence_test.c
+++ b/mm/kfence/kfence_test.c
@@ -282,7 +282,7 @@ static void *test_alloc(struct kunit *test, size_t size, gfp_t gfp, enum allocat
 			alloc = kmalloc(size, gfp);
 
 		if (is_kfence_address(alloc)) {
-			struct page *page = virt_to_head_page(alloc);
+			struct slab *slab = virt_to_slab(alloc);
 			struct kmem_cache *s = test_cache ?:
 					kmalloc_caches[kmalloc_type(GFP_KERNEL)][__kmalloc_index(size, false)];
 
@@ -291,8 +291,8 @@ static void *test_alloc(struct kunit *test, size_t size, gfp_t gfp, enum allocat
 			 * even for KFENCE objects; these are required so that
 			 * memcg accounting works correctly.
 			 */
-			KUNIT_EXPECT_EQ(test, obj_to_index(s, page, alloc), 0U);
-			KUNIT_EXPECT_EQ(test, objs_per_slab_page(s, page), 1);
+			KUNIT_EXPECT_EQ(test, obj_to_index(s, slab, alloc), 0U);
+			KUNIT_EXPECT_EQ(test, objs_per_slab(s, slab), 1);
 
 			if (policy == ALLOCATE_ANY)
 				return alloc;
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 2ed5f2a0879d3b5a95274ade98d601534ecb1975..4a7b3ebf8e48189d5ec445579508721b7f9b3d14 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -2816,31 +2816,31 @@ static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
 	rcu_read_unlock();
 }
 
-int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
-				 gfp_t gfp, bool new_page)
+int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
+				 gfp_t gfp, bool new_slab)
 {
-	unsigned int objects = objs_per_slab_page(s, page);
+	unsigned int objects = objs_per_slab(s, slab);
 	unsigned long memcg_data;
 	void *vec;
 
 	gfp &= ~OBJCGS_CLEAR_MASK;
 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
-			   page_to_nid(page));
+			   slab_nid(slab));
 	if (!vec)
 		return -ENOMEM;
 
 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
-	if (new_page) {
+	if (new_slab) {
 		/*
-		 * If the slab page is brand new and nobody can yet access
-		 * it's memcg_data, no synchronization is required and
-		 * memcg_data can be simply assigned.
+		 * If the slab is brand new and nobody can yet access its
+		 * memcg_data, no synchronization is required and memcg_data can
+		 * be simply assigned.
 		 */
-		page->memcg_data = memcg_data;
-	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
+		slab->memcg_data = memcg_data;
+	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
 		/*
-		 * If the slab page is already in use, somebody can allocate
-		 * and assign obj_cgroups in parallel. In this case the existing
+		 * If the slab is already in use, somebody can allocate and
+		 * assign obj_cgroups in parallel. In this case the existing
 		 * objcg vector should be reused.
 		 */
 		kfree(vec);
@@ -2865,38 +2865,43 @@ int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
  */
 struct mem_cgroup *mem_cgroup_from_obj(void *p)
 {
-	struct page *page;
+	struct folio *folio;
 
 	if (mem_cgroup_disabled())
 		return NULL;
 
-	page = virt_to_head_page(p);
+	folio = virt_to_folio(p);
 
 	/*
 	 * Slab objects are accounted individually, not per-page.
 	 * Memcg membership data for each individual object is saved in
-	 * the page->obj_cgroups.
+	 * slab->memcg_data.
 	 */
-	if (page_objcgs_check(page)) {
-		struct obj_cgroup *objcg;
+	if (folio_test_slab(folio)) {
+		struct obj_cgroup **objcgs;
+		struct slab *slab;
 		unsigned int off;
 
-		off = obj_to_index(page->slab_cache, page, p);
-		objcg = page_objcgs(page)[off];
-		if (objcg)
-			return obj_cgroup_memcg(objcg);
+		slab = folio_slab(folio);
+		objcgs = slab_objcgs(slab);
+		if (!objcgs)
+			return NULL;
+
+		off = obj_to_index(slab->slab_cache, slab, p);
+		if (objcgs[off])
+			return obj_cgroup_memcg(objcgs[off]);
 
 		return NULL;
 	}
 
 	/*
-	 * page_memcg_check() is used here, because page_has_obj_cgroups()
-	 * check above could fail because the object cgroups vector wasn't set
-	 * at that moment, but it can be set concurrently.
+	 * page_memcg_check() is used here, because in theory we can encounter
+	 * a folio where the slab flag has been cleared already, but
+	 * slab->memcg_data has not been freed yet
 	 * page_memcg_check(page) will guarantee that a proper memory
 	 * cgroup pointer or NULL will be returned.
 	 */
-	return page_memcg_check(page);
+	return page_memcg_check(folio_page(folio, 0));
 }
 
 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
diff --git a/mm/slab.c b/mm/slab.c
index ca4822f6b2b6bb2de4800b82b7aa5d11d2610f93..ddf5737c63d9036f8571ab872127b5c7f60b03fc 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -218,7 +218,7 @@ static void cache_reap(struct work_struct *unused);
 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 						void **list);
 static inline void fixup_slab_list(struct kmem_cache *cachep,
-				struct kmem_cache_node *n, struct page *page,
+				struct kmem_cache_node *n, struct slab *slab,
 				void **list);
 static int slab_early_init = 1;
 
@@ -372,10 +372,10 @@ static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 static int slab_max_order = SLAB_MAX_ORDER_LO;
 static bool slab_max_order_set __initdata;
 
-static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
-				 unsigned int idx)
+static inline void *index_to_obj(struct kmem_cache *cache,
+				 const struct slab *slab, unsigned int idx)
 {
-	return page->s_mem + cache->size * idx;
+	return slab->s_mem + cache->size * idx;
 }
 
 #define BOOT_CPUCACHE_ENTRIES	1
@@ -550,17 +550,17 @@ static struct array_cache *alloc_arraycache(int node, int entries,
 }
 
 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
-					struct page *page, void *objp)
+					struct slab *slab, void *objp)
 {
 	struct kmem_cache_node *n;
-	int page_node;
+	int slab_node;
 	LIST_HEAD(list);
 
-	page_node = page_to_nid(page);
-	n = get_node(cachep, page_node);
+	slab_node = slab_nid(slab);
+	n = get_node(cachep, slab_node);
 
 	spin_lock(&n->list_lock);
-	free_block(cachep, &objp, 1, page_node, &list);
+	free_block(cachep, &objp, 1, slab_node, &list);
 	spin_unlock(&n->list_lock);
 
 	slabs_destroy(cachep, &list);
@@ -761,7 +761,7 @@ static void drain_alien_cache(struct kmem_cache *cachep,
 }
 
 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
-				int node, int page_node)
+				int node, int slab_node)
 {
 	struct kmem_cache_node *n;
 	struct alien_cache *alien = NULL;
@@ -770,21 +770,21 @@ static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 
 	n = get_node(cachep, node);
 	STATS_INC_NODEFREES(cachep);
-	if (n->alien && n->alien[page_node]) {
-		alien = n->alien[page_node];
+	if (n->alien && n->alien[slab_node]) {
+		alien = n->alien[slab_node];
 		ac = &alien->ac;
 		spin_lock(&alien->lock);
 		if (unlikely(ac->avail == ac->limit)) {
 			STATS_INC_ACOVERFLOW(cachep);
-			__drain_alien_cache(cachep, ac, page_node, &list);
+			__drain_alien_cache(cachep, ac, slab_node, &list);
 		}
 		__free_one(ac, objp);
 		spin_unlock(&alien->lock);
 		slabs_destroy(cachep, &list);
 	} else {
-		n = get_node(cachep, page_node);
+		n = get_node(cachep, slab_node);
 		spin_lock(&n->list_lock);
-		free_block(cachep, &objp, 1, page_node, &list);
+		free_block(cachep, &objp, 1, slab_node, &list);
 		spin_unlock(&n->list_lock);
 		slabs_destroy(cachep, &list);
 	}
@@ -793,16 +793,16 @@ static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 
 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 {
-	int page_node = page_to_nid(virt_to_page(objp));
+	int slab_node = slab_nid(virt_to_slab(objp));
 	int node = numa_mem_id();
 	/*
 	 * Make sure we are not freeing a object from another node to the array
 	 * cache on this cpu.
 	 */
-	if (likely(node == page_node))
+	if (likely(node == slab_node))
 		return 0;
 
-	return __cache_free_alien(cachep, objp, node, page_node);
+	return __cache_free_alien(cachep, objp, node, slab_node);
 }
 
 /*
@@ -1367,57 +1367,60 @@ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
  * did not request dmaable memory, we might get it, but that
  * would be relatively rare and ignorable.
  */
-static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
+static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
 								int nodeid)
 {
-	struct page *page;
+	struct folio *folio;
+	struct slab *slab;
 
 	flags |= cachep->allocflags;
 
-	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
-	if (!page) {
+	folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
+	if (!folio) {
 		slab_out_of_memory(cachep, flags, nodeid);
 		return NULL;
 	}
 
-	account_slab_page(page, cachep->gfporder, cachep, flags);
-	__SetPageSlab(page);
+	slab = folio_slab(folio);
+
+	account_slab(slab, cachep->gfporder, cachep, flags);
+	__folio_set_slab(folio);
 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
-	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
-		SetPageSlabPfmemalloc(page);
+	if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0)))
+		slab_set_pfmemalloc(slab);
 
-	return page;
+	return slab;
 }
 
 /*
  * Interface to system's page release.
  */
-static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
+static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
 {
 	int order = cachep->gfporder;
+	struct folio *folio = slab_folio(slab);
 
-	BUG_ON(!PageSlab(page));
-	__ClearPageSlabPfmemalloc(page);
-	__ClearPageSlab(page);
-	page_mapcount_reset(page);
-	/* In union with page->mapping where page allocator expects NULL */
-	page->slab_cache = NULL;
+	BUG_ON(!folio_test_slab(folio));
+	__slab_clear_pfmemalloc(slab);
+	__folio_clear_slab(folio);
+	page_mapcount_reset(folio_page(folio, 0));
+	folio->mapping = NULL;
 
 	if (current->reclaim_state)
 		current->reclaim_state->reclaimed_slab += 1 << order;
-	unaccount_slab_page(page, order, cachep);
-	__free_pages(page, order);
+	unaccount_slab(slab, order, cachep);
+	__free_pages(folio_page(folio, 0), order);
 }
 
 static void kmem_rcu_free(struct rcu_head *head)
 {
 	struct kmem_cache *cachep;
-	struct page *page;
+	struct slab *slab;
 
-	page = container_of(head, struct page, rcu_head);
-	cachep = page->slab_cache;
+	slab = container_of(head, struct slab, rcu_head);
+	cachep = slab->slab_cache;
 
-	kmem_freepages(cachep, page);
+	kmem_freepages(cachep, slab);
 }
 
 #if DEBUG
@@ -1553,18 +1556,18 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
 		/* Print some data about the neighboring objects, if they
 		 * exist:
 		 */
-		struct page *page = virt_to_head_page(objp);
+		struct slab *slab = virt_to_slab(objp);
 		unsigned int objnr;
 
-		objnr = obj_to_index(cachep, page, objp);
+		objnr = obj_to_index(cachep, slab, objp);
 		if (objnr) {
-			objp = index_to_obj(cachep, page, objnr - 1);
+			objp = index_to_obj(cachep, slab, objnr - 1);
 			realobj = (char *)objp + obj_offset(cachep);
 			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
 			print_objinfo(cachep, objp, 2);
 		}
 		if (objnr + 1 < cachep->num) {
-			objp = index_to_obj(cachep, page, objnr + 1);
+			objp = index_to_obj(cachep, slab, objnr + 1);
 			realobj = (char *)objp + obj_offset(cachep);
 			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
 			print_objinfo(cachep, objp, 2);
@@ -1575,17 +1578,17 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
 
 #if DEBUG
 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
-						struct page *page)
+						struct slab *slab)
 {
 	int i;
 
 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
-		poison_obj(cachep, page->freelist - obj_offset(cachep),
+		poison_obj(cachep, slab->freelist - obj_offset(cachep),
 			POISON_FREE);
 	}
 
 	for (i = 0; i < cachep->num; i++) {
-		void *objp = index_to_obj(cachep, page, i);
+		void *objp = index_to_obj(cachep, slab, i);
 
 		if (cachep->flags & SLAB_POISON) {
 			check_poison_obj(cachep, objp);
@@ -1601,7 +1604,7 @@ static void slab_destroy_debugcheck(struct kmem_cache *cachep,
 }
 #else
 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
-						struct page *page)
+						struct slab *slab)
 {
 }
 #endif
@@ -1609,22 +1612,22 @@ static void slab_destroy_debugcheck(struct kmem_cache *cachep,
 /**
  * slab_destroy - destroy and release all objects in a slab
  * @cachep: cache pointer being destroyed
- * @page: page pointer being destroyed
+ * @slab: slab being destroyed
  *
- * Destroy all the objs in a slab page, and release the mem back to the system.
- * Before calling the slab page must have been unlinked from the cache. The
+ * Destroy all the objs in a slab, and release the mem back to the system.
+ * Before calling the slab must have been unlinked from the cache. The
  * kmem_cache_node ->list_lock is not held/needed.
  */
-static void slab_destroy(struct kmem_cache *cachep, struct page *page)
+static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
 {
 	void *freelist;
 
-	freelist = page->freelist;
-	slab_destroy_debugcheck(cachep, page);
+	freelist = slab->freelist;
+	slab_destroy_debugcheck(cachep, slab);
 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
-		call_rcu(&page->rcu_head, kmem_rcu_free);
+		call_rcu(&slab->rcu_head, kmem_rcu_free);
 	else
-		kmem_freepages(cachep, page);
+		kmem_freepages(cachep, slab);
 
 	/*
 	 * From now on, we don't use freelist
@@ -1640,11 +1643,11 @@ static void slab_destroy(struct kmem_cache *cachep, struct page *page)
  */
 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
 {
-	struct page *page, *n;
+	struct slab *slab, *n;
 
-	list_for_each_entry_safe(page, n, list, slab_list) {
-		list_del(&page->slab_list);
-		slab_destroy(cachep, page);
+	list_for_each_entry_safe(slab, n, list, slab_list) {
+		list_del(&slab->slab_list);
+		slab_destroy(cachep, slab);
 	}
 }
 
@@ -2194,7 +2197,7 @@ static int drain_freelist(struct kmem_cache *cache,
 {
 	struct list_head *p;
 	int nr_freed;
-	struct page *page;
+	struct slab *slab;
 
 	nr_freed = 0;
 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
@@ -2206,8 +2209,8 @@ static int drain_freelist(struct kmem_cache *cache,
 			goto out;
 		}
 
-		page = list_entry(p, struct page, slab_list);
-		list_del(&page->slab_list);
+		slab = list_entry(p, struct slab, slab_list);
+		list_del(&slab->slab_list);
 		n->free_slabs--;
 		n->total_slabs--;
 		/*
@@ -2216,7 +2219,7 @@ static int drain_freelist(struct kmem_cache *cache,
 		 */
 		n->free_objects -= cache->num;
 		spin_unlock_irq(&n->list_lock);
-		slab_destroy(cache, page);
+		slab_destroy(cache, slab);
 		nr_freed++;
 	}
 out:
@@ -2291,14 +2294,14 @@ void __kmem_cache_release(struct kmem_cache *cachep)
  * which are all initialized during kmem_cache_init().
  */
 static void *alloc_slabmgmt(struct kmem_cache *cachep,
-				   struct page *page, int colour_off,
+				   struct slab *slab, int colour_off,
 				   gfp_t local_flags, int nodeid)
 {
 	void *freelist;
-	void *addr = page_address(page);
+	void *addr = slab_address(slab);
 
-	page->s_mem = addr + colour_off;
-	page->active = 0;
+	slab->s_mem = addr + colour_off;
+	slab->active = 0;
 
 	if (OBJFREELIST_SLAB(cachep))
 		freelist = NULL;
@@ -2315,24 +2318,24 @@ static void *alloc_slabmgmt(struct kmem_cache *cachep,
 	return freelist;
 }
 
-static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
+static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
 {
-	return ((freelist_idx_t *)page->freelist)[idx];
+	return ((freelist_idx_t *) slab->freelist)[idx];
 }
 
-static inline void set_free_obj(struct page *page,
+static inline void set_free_obj(struct slab *slab,
 					unsigned int idx, freelist_idx_t val)
 {
-	((freelist_idx_t *)(page->freelist))[idx] = val;
+	((freelist_idx_t *)(slab->freelist))[idx] = val;
 }
 
-static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
+static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
 {
 #if DEBUG
 	int i;
 
 	for (i = 0; i < cachep->num; i++) {
-		void *objp = index_to_obj(cachep, page, i);
+		void *objp = index_to_obj(cachep, slab, i);
 
 		if (cachep->flags & SLAB_STORE_USER)
 			*dbg_userword(cachep, objp) = NULL;
@@ -2416,17 +2419,17 @@ static freelist_idx_t next_random_slot(union freelist_init_state *state)
 }
 
 /* Swap two freelist entries */
-static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
+static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
 {
-	swap(((freelist_idx_t *)page->freelist)[a],
-		((freelist_idx_t *)page->freelist)[b]);
+	swap(((freelist_idx_t *) slab->freelist)[a],
+		((freelist_idx_t *) slab->freelist)[b]);
 }
 
 /*
  * Shuffle the freelist initialization state based on pre-computed lists.
  * return true if the list was successfully shuffled, false otherwise.
  */
-static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
+static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
 {
 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
 	union freelist_init_state state;
@@ -2443,7 +2446,7 @@ static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
 			objfreelist = count - 1;
 		else
 			objfreelist = next_random_slot(&state);
-		page->freelist = index_to_obj(cachep, page, objfreelist) +
+		slab->freelist = index_to_obj(cachep, slab, objfreelist) +
 						obj_offset(cachep);
 		count--;
 	}
@@ -2454,51 +2457,51 @@ static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
 	 */
 	if (!precomputed) {
 		for (i = 0; i < count; i++)
-			set_free_obj(page, i, i);
+			set_free_obj(slab, i, i);
 
 		/* Fisher-Yates shuffle */
 		for (i = count - 1; i > 0; i--) {
 			rand = prandom_u32_state(&state.rnd_state);
 			rand %= (i + 1);
-			swap_free_obj(page, i, rand);
+			swap_free_obj(slab, i, rand);
 		}
 	} else {
 		for (i = 0; i < count; i++)
-			set_free_obj(page, i, next_random_slot(&state));
+			set_free_obj(slab, i, next_random_slot(&state));
 	}
 
 	if (OBJFREELIST_SLAB(cachep))
-		set_free_obj(page, cachep->num - 1, objfreelist);
+		set_free_obj(slab, cachep->num - 1, objfreelist);
 
 	return true;
 }
 #else
 static inline bool shuffle_freelist(struct kmem_cache *cachep,
-				struct page *page)
+				struct slab *slab)
 {
 	return false;
 }
 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
 
 static void cache_init_objs(struct kmem_cache *cachep,
-			    struct page *page)
+			    struct slab *slab)
 {
 	int i;
 	void *objp;
 	bool shuffled;
 
-	cache_init_objs_debug(cachep, page);
+	cache_init_objs_debug(cachep, slab);
 
 	/* Try to randomize the freelist if enabled */
-	shuffled = shuffle_freelist(cachep, page);
+	shuffled = shuffle_freelist(cachep, slab);
 
 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
-		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
+		slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
 						obj_offset(cachep);
 	}
 
 	for (i = 0; i < cachep->num; i++) {
-		objp = index_to_obj(cachep, page, i);
+		objp = index_to_obj(cachep, slab, i);
 		objp = kasan_init_slab_obj(cachep, objp);
 
 		/* constructor could break poison info */
@@ -2509,68 +2512,56 @@ static void cache_init_objs(struct kmem_cache *cachep,
 		}
 
 		if (!shuffled)
-			set_free_obj(page, i, i);
+			set_free_obj(slab, i, i);
 	}
 }
 
-static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
+static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
 {
 	void *objp;
 
-	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
-	page->active++;
+	objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
+	slab->active++;
 
 	return objp;
 }
 
 static void slab_put_obj(struct kmem_cache *cachep,
-			struct page *page, void *objp)
+			struct slab *slab, void *objp)
 {
-	unsigned int objnr = obj_to_index(cachep, page, objp);
+	unsigned int objnr = obj_to_index(cachep, slab, objp);
 #if DEBUG
 	unsigned int i;
 
 	/* Verify double free bug */
-	for (i = page->active; i < cachep->num; i++) {
-		if (get_free_obj(page, i) == objnr) {
+	for (i = slab->active; i < cachep->num; i++) {
+		if (get_free_obj(slab, i) == objnr) {
 			pr_err("slab: double free detected in cache '%s', objp %px\n",
 			       cachep->name, objp);
 			BUG();
 		}
 	}
 #endif
-	page->active--;
-	if (!page->freelist)
-		page->freelist = objp + obj_offset(cachep);
-
-	set_free_obj(page, page->active, objnr);
-}
+	slab->active--;
+	if (!slab->freelist)
+		slab->freelist = objp + obj_offset(cachep);
 
-/*
- * Map pages beginning at addr to the given cache and slab. This is required
- * for the slab allocator to be able to lookup the cache and slab of a
- * virtual address for kfree, ksize, and slab debugging.
- */
-static void slab_map_pages(struct kmem_cache *cache, struct page *page,
-			   void *freelist)
-{
-	page->slab_cache = cache;
-	page->freelist = freelist;
+	set_free_obj(slab, slab->active, objnr);
 }
 
 /*
  * Grow (by 1) the number of slabs within a cache.  This is called by
  * kmem_cache_alloc() when there are no active objs left in a cache.
  */
-static struct page *cache_grow_begin(struct kmem_cache *cachep,
+static struct slab *cache_grow_begin(struct kmem_cache *cachep,
 				gfp_t flags, int nodeid)
 {
 	void *freelist;
 	size_t offset;
 	gfp_t local_flags;
-	int page_node;
+	int slab_node;
 	struct kmem_cache_node *n;
-	struct page *page;
+	struct slab *slab;
 
 	/*
 	 * Be lazy and only check for valid flags here,  keeping it out of the
@@ -2590,12 +2581,12 @@ static struct page *cache_grow_begin(struct kmem_cache *cachep,
 	 * Get mem for the objs.  Attempt to allocate a physical page from
 	 * 'nodeid'.
 	 */
-	page = kmem_getpages(cachep, local_flags, nodeid);
-	if (!page)
+	slab = kmem_getpages(cachep, local_flags, nodeid);
+	if (!slab)
 		goto failed;
 
-	page_node = page_to_nid(page);
-	n = get_node(cachep, page_node);
+	slab_node = slab_nid(slab);
+	n = get_node(cachep, slab_node);
 
 	/* Get colour for the slab, and cal the next value. */
 	n->colour_next++;
@@ -2613,54 +2604,55 @@ static struct page *cache_grow_begin(struct kmem_cache *cachep,
 	 * page_address() in the latter returns a non-tagged pointer,
 	 * as it should be for slab pages.
 	 */
-	kasan_poison_slab(page);
+	kasan_poison_slab(slab);
 
 	/* Get slab management. */
-	freelist = alloc_slabmgmt(cachep, page, offset,
-			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
+	freelist = alloc_slabmgmt(cachep, slab, offset,
+			local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
 	if (OFF_SLAB(cachep) && !freelist)
 		goto opps1;
 
-	slab_map_pages(cachep, page, freelist);
+	slab->slab_cache = cachep;
+	slab->freelist = freelist;
 
-	cache_init_objs(cachep, page);
+	cache_init_objs(cachep, slab);
 
 	if (gfpflags_allow_blocking(local_flags))
 		local_irq_disable();
 
-	return page;
+	return slab;
 
 opps1:
-	kmem_freepages(cachep, page);
+	kmem_freepages(cachep, slab);
 failed:
 	if (gfpflags_allow_blocking(local_flags))
 		local_irq_disable();
 	return NULL;
 }
 
-static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
+static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
 {
 	struct kmem_cache_node *n;
 	void *list = NULL;
 
 	check_irq_off();
 
-	if (!page)
+	if (!slab)
 		return;
 
-	INIT_LIST_HEAD(&page->slab_list);
-	n = get_node(cachep, page_to_nid(page));
+	INIT_LIST_HEAD(&slab->slab_list);
+	n = get_node(cachep, slab_nid(slab));
 
 	spin_lock(&n->list_lock);
 	n->total_slabs++;
-	if (!page->active) {
-		list_add_tail(&page->slab_list, &n->slabs_free);
+	if (!slab->active) {
+		list_add_tail(&slab->slab_list, &n->slabs_free);
 		n->free_slabs++;
 	} else
-		fixup_slab_list(cachep, n, page, &list);
+		fixup_slab_list(cachep, n, slab, &list);
 
 	STATS_INC_GROWN(cachep);
-	n->free_objects += cachep->num - page->active;
+	n->free_objects += cachep->num - slab->active;
 	spin_unlock(&n->list_lock);
 
 	fixup_objfreelist_debug(cachep, &list);
@@ -2708,13 +2700,13 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
 				   unsigned long caller)
 {
 	unsigned int objnr;
-	struct page *page;
+	struct slab *slab;
 
 	BUG_ON(virt_to_cache(objp) != cachep);
 
 	objp -= obj_offset(cachep);
 	kfree_debugcheck(objp);
-	page = virt_to_head_page(objp);
+	slab = virt_to_slab(objp);
 
 	if (cachep->flags & SLAB_RED_ZONE) {
 		verify_redzone_free(cachep, objp);
@@ -2724,10 +2716,10 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
 	if (cachep->flags & SLAB_STORE_USER)
 		*dbg_userword(cachep, objp) = (void *)caller;
 
-	objnr = obj_to_index(cachep, page, objp);
+	objnr = obj_to_index(cachep, slab, objp);
 
 	BUG_ON(objnr >= cachep->num);
-	BUG_ON(objp != index_to_obj(cachep, page, objnr));
+	BUG_ON(objp != index_to_obj(cachep, slab, objnr));
 
 	if (cachep->flags & SLAB_POISON) {
 		poison_obj(cachep, objp, POISON_FREE);
@@ -2757,97 +2749,97 @@ static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 }
 
 static inline void fixup_slab_list(struct kmem_cache *cachep,
-				struct kmem_cache_node *n, struct page *page,
+				struct kmem_cache_node *n, struct slab *slab,
 				void **list)
 {
 	/* move slabp to correct slabp list: */
-	list_del(&page->slab_list);
-	if (page->active == cachep->num) {
-		list_add(&page->slab_list, &n->slabs_full);
+	list_del(&slab->slab_list);
+	if (slab->active == cachep->num) {
+		list_add(&slab->slab_list, &n->slabs_full);
 		if (OBJFREELIST_SLAB(cachep)) {
 #if DEBUG
 			/* Poisoning will be done without holding the lock */
 			if (cachep->flags & SLAB_POISON) {
-				void **objp = page->freelist;
+				void **objp = slab->freelist;
 
 				*objp = *list;
 				*list = objp;
 			}
 #endif
-			page->freelist = NULL;
+			slab->freelist = NULL;
 		}
 	} else
-		list_add(&page->slab_list, &n->slabs_partial);
+		list_add(&slab->slab_list, &n->slabs_partial);
 }
 
 /* Try to find non-pfmemalloc slab if needed */
-static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
-					struct page *page, bool pfmemalloc)
+static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
+					struct slab *slab, bool pfmemalloc)
 {
-	if (!page)
+	if (!slab)
 		return NULL;
 
 	if (pfmemalloc)
-		return page;
+		return slab;
 
-	if (!PageSlabPfmemalloc(page))
-		return page;
+	if (!slab_test_pfmemalloc(slab))
+		return slab;
 
 	/* No need to keep pfmemalloc slab if we have enough free objects */
 	if (n->free_objects > n->free_limit) {
-		ClearPageSlabPfmemalloc(page);
-		return page;
+		slab_clear_pfmemalloc(slab);
+		return slab;
 	}
 
 	/* Move pfmemalloc slab to the end of list to speed up next search */
-	list_del(&page->slab_list);
-	if (!page->active) {
-		list_add_tail(&page->slab_list, &n->slabs_free);
+	list_del(&slab->slab_list);
+	if (!slab->active) {
+		list_add_tail(&slab->slab_list, &n->slabs_free);
 		n->free_slabs++;
 	} else
-		list_add_tail(&page->slab_list, &n->slabs_partial);
+		list_add_tail(&slab->slab_list, &n->slabs_partial);
 
-	list_for_each_entry(page, &n->slabs_partial, slab_list) {
-		if (!PageSlabPfmemalloc(page))
-			return page;
+	list_for_each_entry(slab, &n->slabs_partial, slab_list) {
+		if (!slab_test_pfmemalloc(slab))
+			return slab;
 	}
 
 	n->free_touched = 1;
-	list_for_each_entry(page, &n->slabs_free, slab_list) {
-		if (!PageSlabPfmemalloc(page)) {
+	list_for_each_entry(slab, &n->slabs_free, slab_list) {
+		if (!slab_test_pfmemalloc(slab)) {
 			n->free_slabs--;
-			return page;
+			return slab;
 		}
 	}
 
 	return NULL;
 }
 
-static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
+static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
 {
-	struct page *page;
+	struct slab *slab;
 
 	assert_spin_locked(&n->list_lock);
-	page = list_first_entry_or_null(&n->slabs_partial, struct page,
+	slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
 					slab_list);
-	if (!page) {
+	if (!slab) {
 		n->free_touched = 1;
-		page = list_first_entry_or_null(&n->slabs_free, struct page,
+		slab = list_first_entry_or_null(&n->slabs_free, struct slab,
 						slab_list);
-		if (page)
+		if (slab)
 			n->free_slabs--;
 	}
 
 	if (sk_memalloc_socks())
-		page = get_valid_first_slab(n, page, pfmemalloc);
+		slab = get_valid_first_slab(n, slab, pfmemalloc);
 
-	return page;
+	return slab;
 }
 
 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
 				struct kmem_cache_node *n, gfp_t flags)
 {
-	struct page *page;
+	struct slab *slab;
 	void *obj;
 	void *list = NULL;
 
@@ -2855,16 +2847,16 @@ static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
 		return NULL;
 
 	spin_lock(&n->list_lock);
-	page = get_first_slab(n, true);
-	if (!page) {
+	slab = get_first_slab(n, true);
+	if (!slab) {
 		spin_unlock(&n->list_lock);
 		return NULL;
 	}
 
-	obj = slab_get_obj(cachep, page);
+	obj = slab_get_obj(cachep, slab);
 	n->free_objects--;
 
-	fixup_slab_list(cachep, n, page, &list);
+	fixup_slab_list(cachep, n, slab, &list);
 
 	spin_unlock(&n->list_lock);
 	fixup_objfreelist_debug(cachep, &list);
@@ -2877,20 +2869,20 @@ static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
  * or cache_grow_end() for new slab
  */
 static __always_inline int alloc_block(struct kmem_cache *cachep,
-		struct array_cache *ac, struct page *page, int batchcount)
+		struct array_cache *ac, struct slab *slab, int batchcount)
 {
 	/*
 	 * There must be at least one object available for
 	 * allocation.
 	 */
-	BUG_ON(page->active >= cachep->num);
+	BUG_ON(slab->active >= cachep->num);
 
-	while (page->active < cachep->num && batchcount--) {
+	while (slab->active < cachep->num && batchcount--) {
 		STATS_INC_ALLOCED(cachep);
 		STATS_INC_ACTIVE(cachep);
 		STATS_SET_HIGH(cachep);
 
-		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
+		ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
 	}
 
 	return batchcount;
@@ -2903,7 +2895,7 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
 	struct array_cache *ac, *shared;
 	int node;
 	void *list = NULL;
-	struct page *page;
+	struct slab *slab;
 
 	check_irq_off();
 	node = numa_mem_id();
@@ -2936,14 +2928,14 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
 
 	while (batchcount > 0) {
 		/* Get slab alloc is to come from. */
-		page = get_first_slab(n, false);
-		if (!page)
+		slab = get_first_slab(n, false);
+		if (!slab)
 			goto must_grow;
 
 		check_spinlock_acquired(cachep);
 
-		batchcount = alloc_block(cachep, ac, page, batchcount);
-		fixup_slab_list(cachep, n, page, &list);
+		batchcount = alloc_block(cachep, ac, slab, batchcount);
+		fixup_slab_list(cachep, n, slab, &list);
 	}
 
 must_grow:
@@ -2962,16 +2954,16 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
 				return obj;
 		}
 
-		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
+		slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
 
 		/*
 		 * cache_grow_begin() can reenable interrupts,
 		 * then ac could change.
 		 */
 		ac = cpu_cache_get(cachep);
-		if (!ac->avail && page)
-			alloc_block(cachep, ac, page, batchcount);
-		cache_grow_end(cachep, page);
+		if (!ac->avail && slab)
+			alloc_block(cachep, ac, slab, batchcount);
+		cache_grow_end(cachep, slab);
 
 		if (!ac->avail)
 			return NULL;
@@ -3101,7 +3093,7 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
 	struct zone *zone;
 	enum zone_type highest_zoneidx = gfp_zone(flags);
 	void *obj = NULL;
-	struct page *page;
+	struct slab *slab;
 	int nid;
 	unsigned int cpuset_mems_cookie;
 
@@ -3137,10 +3129,10 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
 		 * We may trigger various forms of reclaim on the allowed
 		 * set and go into memory reserves if necessary.
 		 */
-		page = cache_grow_begin(cache, flags, numa_mem_id());
-		cache_grow_end(cache, page);
-		if (page) {
-			nid = page_to_nid(page);
+		slab = cache_grow_begin(cache, flags, numa_mem_id());
+		cache_grow_end(cache, slab);
+		if (slab) {
+			nid = slab_nid(slab);
 			obj = ____cache_alloc_node(cache,
 				gfp_exact_node(flags), nid);
 
@@ -3164,7 +3156,7 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
 				int nodeid)
 {
-	struct page *page;
+	struct slab *slab;
 	struct kmem_cache_node *n;
 	void *obj = NULL;
 	void *list = NULL;
@@ -3175,8 +3167,8 @@ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
 
 	check_irq_off();
 	spin_lock(&n->list_lock);
-	page = get_first_slab(n, false);
-	if (!page)
+	slab = get_first_slab(n, false);
+	if (!slab)
 		goto must_grow;
 
 	check_spinlock_acquired_node(cachep, nodeid);
@@ -3185,12 +3177,12 @@ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
 	STATS_INC_ACTIVE(cachep);
 	STATS_SET_HIGH(cachep);
 
-	BUG_ON(page->active == cachep->num);
+	BUG_ON(slab->active == cachep->num);
 
-	obj = slab_get_obj(cachep, page);
+	obj = slab_get_obj(cachep, slab);
 	n->free_objects--;
 
-	fixup_slab_list(cachep, n, page, &list);
+	fixup_slab_list(cachep, n, slab, &list);
 
 	spin_unlock(&n->list_lock);
 	fixup_objfreelist_debug(cachep, &list);
@@ -3198,12 +3190,12 @@ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
 
 must_grow:
 	spin_unlock(&n->list_lock);
-	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
-	if (page) {
+	slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
+	if (slab) {
 		/* This slab isn't counted yet so don't update free_objects */
-		obj = slab_get_obj(cachep, page);
+		obj = slab_get_obj(cachep, slab);
 	}
-	cache_grow_end(cachep, page);
+	cache_grow_end(cachep, slab);
 
 	return obj ? obj : fallback_alloc(cachep, flags);
 }
@@ -3333,40 +3325,40 @@ static void free_block(struct kmem_cache *cachep, void **objpp,
 {
 	int i;
 	struct kmem_cache_node *n = get_node(cachep, node);
-	struct page *page;
+	struct slab *slab;
 
 	n->free_objects += nr_objects;
 
 	for (i = 0; i < nr_objects; i++) {
 		void *objp;
-		struct page *page;
+		struct slab *slab;
 
 		objp = objpp[i];
 
-		page = virt_to_head_page(objp);
-		list_del(&page->slab_list);
+		slab = virt_to_slab(objp);
+		list_del(&slab->slab_list);
 		check_spinlock_acquired_node(cachep, node);
-		slab_put_obj(cachep, page, objp);
+		slab_put_obj(cachep, slab, objp);
 		STATS_DEC_ACTIVE(cachep);
 
 		/* fixup slab chains */
-		if (page->active == 0) {
-			list_add(&page->slab_list, &n->slabs_free);
+		if (slab->active == 0) {
+			list_add(&slab->slab_list, &n->slabs_free);
 			n->free_slabs++;
 		} else {
 			/* Unconditionally move a slab to the end of the
 			 * partial list on free - maximum time for the
 			 * other objects to be freed, too.
 			 */
-			list_add_tail(&page->slab_list, &n->slabs_partial);
+			list_add_tail(&slab->slab_list, &n->slabs_partial);
 		}
 	}
 
 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
 		n->free_objects -= cachep->num;
 
-		page = list_last_entry(&n->slabs_free, struct page, slab_list);
-		list_move(&page->slab_list, list);
+		slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
+		list_move(&slab->slab_list, list);
 		n->free_slabs--;
 		n->total_slabs--;
 	}
@@ -3402,10 +3394,10 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
 #if STATS
 	{
 		int i = 0;
-		struct page *page;
+		struct slab *slab;
 
-		list_for_each_entry(page, &n->slabs_free, slab_list) {
-			BUG_ON(page->active);
+		list_for_each_entry(slab, &n->slabs_free, slab_list) {
+			BUG_ON(slab->active);
 
 			i++;
 		}
@@ -3481,10 +3473,10 @@ void ___cache_free(struct kmem_cache *cachep, void *objp,
 	}
 
 	if (sk_memalloc_socks()) {
-		struct page *page = virt_to_head_page(objp);
+		struct slab *slab = virt_to_slab(objp);
 
-		if (unlikely(PageSlabPfmemalloc(page))) {
-			cache_free_pfmemalloc(cachep, page, objp);
+		if (unlikely(slab_test_pfmemalloc(slab))) {
+			cache_free_pfmemalloc(cachep, slab, objp);
 			return;
 		}
 	}
@@ -3657,21 +3649,21 @@ EXPORT_SYMBOL(__kmalloc_node_track_caller);
 #endif /* CONFIG_NUMA */
 
 #ifdef CONFIG_PRINTK
-void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
+void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 {
 	struct kmem_cache *cachep;
 	unsigned int objnr;
 	void *objp;
 
 	kpp->kp_ptr = object;
-	kpp->kp_page = page;
-	cachep = page->slab_cache;
+	kpp->kp_slab = slab;
+	cachep = slab->slab_cache;
 	kpp->kp_slab_cache = cachep;
 	objp = object - obj_offset(cachep);
 	kpp->kp_data_offset = obj_offset(cachep);
-	page = virt_to_head_page(objp);
-	objnr = obj_to_index(cachep, page, objp);
-	objp = index_to_obj(cachep, page, objnr);
+	slab = virt_to_slab(objp);
+	objnr = obj_to_index(cachep, slab, objp);
+	objp = index_to_obj(cachep, slab, objnr);
 	kpp->kp_objp = objp;
 	if (DEBUG && cachep->flags & SLAB_STORE_USER)
 		kpp->kp_ret = *dbg_userword(cachep, objp);
@@ -4177,8 +4169,8 @@ ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  * Returns NULL if check passes, otherwise const char * to name of cache
  * to indicate an error.
  */
-void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
-			 bool to_user)
+void __check_heap_object(const void *ptr, unsigned long n,
+			 const struct slab *slab, bool to_user)
 {
 	struct kmem_cache *cachep;
 	unsigned int objnr;
@@ -4187,15 +4179,15 @@ void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
 	ptr = kasan_reset_tag(ptr);
 
 	/* Find and validate object. */
-	cachep = page->slab_cache;
-	objnr = obj_to_index(cachep, page, (void *)ptr);
+	cachep = slab->slab_cache;
+	objnr = obj_to_index(cachep, slab, (void *)ptr);
 	BUG_ON(objnr >= cachep->num);
 
 	/* Find offset within object. */
 	if (is_kfence_address(ptr))
 		offset = ptr - kfence_object_start(ptr);
 	else
-		offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
+		offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
 
 	/* Allow address range falling entirely within usercopy region. */
 	if (offset >= cachep->useroffset &&
diff --git a/mm/slab.h b/mm/slab.h
index 56ad7eea3ddfbcf7c434f9fe26a7600f31dd27a8..95b9a74a2d515fd83091253b786886be9cc08476 100644
--- a/mm/slab.h
+++ b/mm/slab.h
@@ -5,6 +5,197 @@
  * Internal slab definitions
  */
 
+/* Reuses the bits in struct page */
+struct slab {
+	unsigned long __page_flags;
+
+#if defined(CONFIG_SLAB)
+
+	union {
+		struct list_head slab_list;
+		struct rcu_head rcu_head;
+	};
+	struct kmem_cache *slab_cache;
+	void *freelist;	/* array of free object indexes */
+	void *s_mem;	/* first object */
+	unsigned int active;
+
+#elif defined(CONFIG_SLUB)
+
+	union {
+		struct list_head slab_list;
+		struct rcu_head rcu_head;
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+		struct {
+			struct slab *next;
+			int slabs;	/* Nr of slabs left */
+		};
+#endif
+	};
+	struct kmem_cache *slab_cache;
+	/* Double-word boundary */
+	void *freelist;		/* first free object */
+	union {
+		unsigned long counters;
+		struct {
+			unsigned inuse:16;
+			unsigned objects:15;
+			unsigned frozen:1;
+		};
+	};
+	unsigned int __unused;
+
+#elif defined(CONFIG_SLOB)
+
+	struct list_head slab_list;
+	void *__unused_1;
+	void *freelist;		/* first free block */
+	long units;
+	unsigned int __unused_2;
+
+#else
+#error "Unexpected slab allocator configured"
+#endif
+
+	atomic_t __page_refcount;
+#ifdef CONFIG_MEMCG
+	unsigned long memcg_data;
+#endif
+};
+
+#define SLAB_MATCH(pg, sl)						\
+	static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
+SLAB_MATCH(flags, __page_flags);
+SLAB_MATCH(compound_head, slab_list);	/* Ensure bit 0 is clear */
+SLAB_MATCH(slab_list, slab_list);
+#ifndef CONFIG_SLOB
+SLAB_MATCH(rcu_head, rcu_head);
+SLAB_MATCH(slab_cache, slab_cache);
+#endif
+#ifdef CONFIG_SLAB
+SLAB_MATCH(s_mem, s_mem);
+SLAB_MATCH(active, active);
+#endif
+SLAB_MATCH(_refcount, __page_refcount);
+#ifdef CONFIG_MEMCG
+SLAB_MATCH(memcg_data, memcg_data);
+#endif
+#undef SLAB_MATCH
+static_assert(sizeof(struct slab) <= sizeof(struct page));
+
+/**
+ * folio_slab - Converts from folio to slab.
+ * @folio: The folio.
+ *
+ * Currently struct slab is a different representation of a folio where
+ * folio_test_slab() is true.
+ *
+ * Return: The slab which contains this folio.
+ */
+#define folio_slab(folio)	(_Generic((folio),			\
+	const struct folio *:	(const struct slab *)(folio),		\
+	struct folio *:		(struct slab *)(folio)))
+
+/**
+ * slab_folio - The folio allocated for a slab
+ * @slab: The slab.
+ *
+ * Slabs are allocated as folios that contain the individual objects and are
+ * using some fields in the first struct page of the folio - those fields are
+ * now accessed by struct slab. It is occasionally necessary to convert back to
+ * a folio in order to communicate with the rest of the mm.  Please use this
+ * helper function instead of casting yourself, as the implementation may change
+ * in the future.
+ */
+#define slab_folio(s)		(_Generic((s),				\
+	const struct slab *:	(const struct folio *)s,		\
+	struct slab *:		(struct folio *)s))
+
+/**
+ * page_slab - Converts from first struct page to slab.
+ * @p: The first (either head of compound or single) page of slab.
+ *
+ * A temporary wrapper to convert struct page to struct slab in situations where
+ * we know the page is the compound head, or single order-0 page.
+ *
+ * Long-term ideally everything would work with struct slab directly or go
+ * through folio to struct slab.
+ *
+ * Return: The slab which contains this page
+ */
+#define page_slab(p)		(_Generic((p),				\
+	const struct page *:	(const struct slab *)(p),		\
+	struct page *:		(struct slab *)(p)))
+
+/**
+ * slab_page - The first struct page allocated for a slab
+ * @slab: The slab.
+ *
+ * A convenience wrapper for converting slab to the first struct page of the
+ * underlying folio, to communicate with code not yet converted to folio or
+ * struct slab.
+ */
+#define slab_page(s) folio_page(slab_folio(s), 0)
+
+/*
+ * If network-based swap is enabled, sl*b must keep track of whether pages
+ * were allocated from pfmemalloc reserves.
+ */
+static inline bool slab_test_pfmemalloc(const struct slab *slab)
+{
+	return folio_test_active((struct folio *)slab_folio(slab));
+}
+
+static inline void slab_set_pfmemalloc(struct slab *slab)
+{
+	folio_set_active(slab_folio(slab));
+}
+
+static inline void slab_clear_pfmemalloc(struct slab *slab)
+{
+	folio_clear_active(slab_folio(slab));
+}
+
+static inline void __slab_clear_pfmemalloc(struct slab *slab)
+{
+	__folio_clear_active(slab_folio(slab));
+}
+
+static inline void *slab_address(const struct slab *slab)
+{
+	return folio_address(slab_folio(slab));
+}
+
+static inline int slab_nid(const struct slab *slab)
+{
+	return folio_nid(slab_folio(slab));
+}
+
+static inline pg_data_t *slab_pgdat(const struct slab *slab)
+{
+	return folio_pgdat(slab_folio(slab));
+}
+
+static inline struct slab *virt_to_slab(const void *addr)
+{
+	struct folio *folio = virt_to_folio(addr);
+
+	if (!folio_test_slab(folio))
+		return NULL;
+
+	return folio_slab(folio);
+}
+
+static inline int slab_order(const struct slab *slab)
+{
+	return folio_order((struct folio *)slab_folio(slab));
+}
+
+static inline size_t slab_size(const struct slab *slab)
+{
+	return PAGE_SIZE << slab_order(slab);
+}
+
 #ifdef CONFIG_SLOB
 /*
  * Common fields provided in kmem_cache by all slab allocators
@@ -245,15 +436,33 @@ static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t fla
 }
 
 #ifdef CONFIG_MEMCG_KMEM
-int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
-				 gfp_t gfp, bool new_page);
+/*
+ * slab_objcgs - get the object cgroups vector associated with a slab
+ * @slab: a pointer to the slab struct
+ *
+ * Returns a pointer to the object cgroups vector associated with the slab,
+ * or NULL if no such vector has been associated yet.
+ */
+static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
+{
+	unsigned long memcg_data = READ_ONCE(slab->memcg_data);
+
+	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
+							slab_page(slab));
+	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
+
+	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
+}
+
+int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
+				 gfp_t gfp, bool new_slab);
 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
 		     enum node_stat_item idx, int nr);
 
-static inline void memcg_free_page_obj_cgroups(struct page *page)
+static inline void memcg_free_slab_cgroups(struct slab *slab)
 {
-	kfree(page_objcgs(page));
-	page->memcg_data = 0;
+	kfree(slab_objcgs(slab));
+	slab->memcg_data = 0;
 }
 
 static inline size_t obj_full_size(struct kmem_cache *s)
@@ -298,7 +507,7 @@ static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
 					      gfp_t flags, size_t size,
 					      void **p)
 {
-	struct page *page;
+	struct slab *slab;
 	unsigned long off;
 	size_t i;
 
@@ -307,19 +516,19 @@ static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
 
 	for (i = 0; i < size; i++) {
 		if (likely(p[i])) {
-			page = virt_to_head_page(p[i]);
+			slab = virt_to_slab(p[i]);
 
-			if (!page_objcgs(page) &&
-			    memcg_alloc_page_obj_cgroups(page, s, flags,
+			if (!slab_objcgs(slab) &&
+			    memcg_alloc_slab_cgroups(slab, s, flags,
 							 false)) {
 				obj_cgroup_uncharge(objcg, obj_full_size(s));
 				continue;
 			}
 
-			off = obj_to_index(s, page, p[i]);
+			off = obj_to_index(s, slab, p[i]);
 			obj_cgroup_get(objcg);
-			page_objcgs(page)[off] = objcg;
-			mod_objcg_state(objcg, page_pgdat(page),
+			slab_objcgs(slab)[off] = objcg;
+			mod_objcg_state(objcg, slab_pgdat(slab),
 					cache_vmstat_idx(s), obj_full_size(s));
 		} else {
 			obj_cgroup_uncharge(objcg, obj_full_size(s));
@@ -334,7 +543,7 @@ static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
 	struct kmem_cache *s;
 	struct obj_cgroup **objcgs;
 	struct obj_cgroup *objcg;
-	struct page *page;
+	struct slab *slab;
 	unsigned int off;
 	int i;
 
@@ -345,43 +554,52 @@ static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
 		if (unlikely(!p[i]))
 			continue;
 
-		page = virt_to_head_page(p[i]);
-		objcgs = page_objcgs_check(page);
+		slab = virt_to_slab(p[i]);
+		/* we could be given a kmalloc_large() object, skip those */
+		if (!slab)
+			continue;
+
+		objcgs = slab_objcgs(slab);
 		if (!objcgs)
 			continue;
 
 		if (!s_orig)
-			s = page->slab_cache;
+			s = slab->slab_cache;
 		else
 			s = s_orig;
 
-		off = obj_to_index(s, page, p[i]);
+		off = obj_to_index(s, slab, p[i]);
 		objcg = objcgs[off];
 		if (!objcg)
 			continue;
 
 		objcgs[off] = NULL;
 		obj_cgroup_uncharge(objcg, obj_full_size(s));
-		mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
+		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
 				-obj_full_size(s));
 		obj_cgroup_put(objcg);
 	}
 }
 
 #else /* CONFIG_MEMCG_KMEM */
+static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
+{
+	return NULL;
+}
+
 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
 {
 	return NULL;
 }
 
-static inline int memcg_alloc_page_obj_cgroups(struct page *page,
+static inline int memcg_alloc_slab_cgroups(struct slab *slab,
 					       struct kmem_cache *s, gfp_t gfp,
-					       bool new_page)
+					       bool new_slab)
 {
 	return 0;
 }
 
-static inline void memcg_free_page_obj_cgroups(struct page *page)
+static inline void memcg_free_slab_cgroups(struct slab *slab)
 {
 }
 
@@ -405,35 +623,35 @@ static inline void memcg_slab_free_hook(struct kmem_cache *s,
 }
 #endif /* CONFIG_MEMCG_KMEM */
 
+#ifndef CONFIG_SLOB
 static inline struct kmem_cache *virt_to_cache(const void *obj)
 {
-	struct page *page;
+	struct slab *slab;
 
-	page = virt_to_head_page(obj);
-	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
+	slab = virt_to_slab(obj);
+	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
 					__func__))
 		return NULL;
-	return page->slab_cache;
+	return slab->slab_cache;
 }
 
-static __always_inline void account_slab_page(struct page *page, int order,
-					      struct kmem_cache *s,
-					      gfp_t gfp)
+static __always_inline void account_slab(struct slab *slab, int order,
+					 struct kmem_cache *s, gfp_t gfp)
 {
 	if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
-		memcg_alloc_page_obj_cgroups(page, s, gfp, true);
+		memcg_alloc_slab_cgroups(slab, s, gfp, true);
 
-	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
+	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
 			    PAGE_SIZE << order);
 }
 
-static __always_inline void unaccount_slab_page(struct page *page, int order,
-						struct kmem_cache *s)
+static __always_inline void unaccount_slab(struct slab *slab, int order,
+					   struct kmem_cache *s)
 {
 	if (memcg_kmem_enabled())
-		memcg_free_page_obj_cgroups(page);
+		memcg_free_slab_cgroups(slab);
 
-	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
+	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
 			    -(PAGE_SIZE << order));
 }
 
@@ -452,6 +670,7 @@ static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
 		print_tracking(cachep, x);
 	return cachep;
 }
+#endif /* CONFIG_SLOB */
 
 static inline size_t slab_ksize(const struct kmem_cache *s)
 {
@@ -635,7 +854,7 @@ static inline void debugfs_slab_release(struct kmem_cache *s) { }
 #define KS_ADDRS_COUNT 16
 struct kmem_obj_info {
 	void *kp_ptr;
-	struct page *kp_page;
+	struct slab *kp_slab;
 	void *kp_objp;
 	unsigned long kp_data_offset;
 	struct kmem_cache *kp_slab_cache;
@@ -643,7 +862,18 @@ struct kmem_obj_info {
 	void *kp_stack[KS_ADDRS_COUNT];
 	void *kp_free_stack[KS_ADDRS_COUNT];
 };
-void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page);
+void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
+#endif
+
+#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
+void __check_heap_object(const void *ptr, unsigned long n,
+			 const struct slab *slab, bool to_user);
+#else
+static inline
+void __check_heap_object(const void *ptr, unsigned long n,
+			 const struct slab *slab, bool to_user)
+{
+}
 #endif
 
 #endif /* MM_SLAB_H */
diff --git a/mm/slab_common.c b/mm/slab_common.c
index e5d080a9300933cdde0eddb679ab34596825cd54..dc15566141d4447bda26128a9a0158c5128ee081 100644
--- a/mm/slab_common.c
+++ b/mm/slab_common.c
@@ -550,13 +550,13 @@ bool slab_is_available(void)
  */
 bool kmem_valid_obj(void *object)
 {
-	struct page *page;
+	struct folio *folio;
 
 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
 		return false;
-	page = virt_to_head_page(object);
-	return PageSlab(page);
+	folio = virt_to_folio(object);
+	return folio_test_slab(folio);
 }
 EXPORT_SYMBOL_GPL(kmem_valid_obj);
 
@@ -579,18 +579,18 @@ void kmem_dump_obj(void *object)
 {
 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
 	int i;
-	struct page *page;
+	struct slab *slab;
 	unsigned long ptroffset;
 	struct kmem_obj_info kp = { };
 
 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
 		return;
-	page = virt_to_head_page(object);
-	if (WARN_ON_ONCE(!PageSlab(page))) {
+	slab = virt_to_slab(object);
+	if (WARN_ON_ONCE(!slab)) {
 		pr_cont(" non-slab memory.\n");
 		return;
 	}
-	kmem_obj_info(&kp, object, page);
+	kmem_obj_info(&kp, object, slab);
 	if (kp.kp_slab_cache)
 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
 	else
diff --git a/mm/slob.c b/mm/slob.c
index 03deee1e6a94c34ed711257a4af8d0ac13583667..60c5842215f1b1773519a69155b0e657e2d2dd90 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -30,7 +30,7 @@
  * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
  * alloc_pages() directly, allocating compound pages so the page order
  * does not have to be separately tracked.
- * These objects are detected in kfree() because PageSlab()
+ * These objects are detected in kfree() because folio_test_slab()
  * is false for them.
  *
  * SLAB is emulated on top of SLOB by simply calling constructors and
@@ -105,21 +105,21 @@ static LIST_HEAD(free_slob_large);
 /*
  * slob_page_free: true for pages on free_slob_pages list.
  */
-static inline int slob_page_free(struct page *sp)
+static inline int slob_page_free(struct slab *slab)
 {
-	return PageSlobFree(sp);
+	return PageSlobFree(slab_page(slab));
 }
 
-static void set_slob_page_free(struct page *sp, struct list_head *list)
+static void set_slob_page_free(struct slab *slab, struct list_head *list)
 {
-	list_add(&sp->slab_list, list);
-	__SetPageSlobFree(sp);
+	list_add(&slab->slab_list, list);
+	__SetPageSlobFree(slab_page(slab));
 }
 
-static inline void clear_slob_page_free(struct page *sp)
+static inline void clear_slob_page_free(struct slab *slab)
 {
-	list_del(&sp->slab_list);
-	__ClearPageSlobFree(sp);
+	list_del(&slab->slab_list);
+	__ClearPageSlobFree(slab_page(slab));
 }
 
 #define SLOB_UNIT sizeof(slob_t)
@@ -234,7 +234,7 @@ static void slob_free_pages(void *b, int order)
  *         freelist, in this case @page_removed_from_list will be set to
  *         true (set to false otherwise).
  */
-static void *slob_page_alloc(struct page *sp, size_t size, int align,
+static void *slob_page_alloc(struct slab *sp, size_t size, int align,
 			      int align_offset, bool *page_removed_from_list)
 {
 	slob_t *prev, *cur, *aligned = NULL;
@@ -301,7 +301,8 @@ static void *slob_page_alloc(struct page *sp, size_t size, int align,
 static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
 							int align_offset)
 {
-	struct page *sp;
+	struct folio *folio;
+	struct slab *sp;
 	struct list_head *slob_list;
 	slob_t *b = NULL;
 	unsigned long flags;
@@ -323,7 +324,7 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
 		 * If there's a node specification, search for a partial
 		 * page with a matching node id in the freelist.
 		 */
-		if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
+		if (node != NUMA_NO_NODE && slab_nid(sp) != node)
 			continue;
 #endif
 		/* Enough room on this page? */
@@ -358,8 +359,9 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
 		b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
 		if (!b)
 			return NULL;
-		sp = virt_to_page(b);
-		__SetPageSlab(sp);
+		folio = virt_to_folio(b);
+		__folio_set_slab(folio);
+		sp = folio_slab(folio);
 
 		spin_lock_irqsave(&slob_lock, flags);
 		sp->units = SLOB_UNITS(PAGE_SIZE);
@@ -381,7 +383,7 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
  */
 static void slob_free(void *block, int size)
 {
-	struct page *sp;
+	struct slab *sp;
 	slob_t *prev, *next, *b = (slob_t *)block;
 	slobidx_t units;
 	unsigned long flags;
@@ -391,7 +393,7 @@ static void slob_free(void *block, int size)
 		return;
 	BUG_ON(!size);
 
-	sp = virt_to_page(block);
+	sp = virt_to_slab(block);
 	units = SLOB_UNITS(size);
 
 	spin_lock_irqsave(&slob_lock, flags);
@@ -401,8 +403,7 @@ static void slob_free(void *block, int size)
 		if (slob_page_free(sp))
 			clear_slob_page_free(sp);
 		spin_unlock_irqrestore(&slob_lock, flags);
-		__ClearPageSlab(sp);
-		page_mapcount_reset(sp);
+		__folio_clear_slab(slab_folio(sp));
 		slob_free_pages(b, 0);
 		return;
 	}
@@ -462,10 +463,10 @@ static void slob_free(void *block, int size)
 }
 
 #ifdef CONFIG_PRINTK
-void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
+void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 {
 	kpp->kp_ptr = object;
-	kpp->kp_page = page;
+	kpp->kp_slab = slab;
 }
 #endif
 
@@ -544,7 +545,7 @@ EXPORT_SYMBOL(__kmalloc_node_track_caller);
 
 void kfree(const void *block)
 {
-	struct page *sp;
+	struct folio *sp;
 
 	trace_kfree(_RET_IP_, block);
 
@@ -552,16 +553,17 @@ void kfree(const void *block)
 		return;
 	kmemleak_free(block);
 
-	sp = virt_to_page(block);
-	if (PageSlab(sp)) {
+	sp = virt_to_folio(block);
+	if (folio_test_slab(sp)) {
 		int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 		unsigned int *m = (unsigned int *)(block - align);
 		slob_free(m, *m + align);
 	} else {
-		unsigned int order = compound_order(sp);
-		mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
+		unsigned int order = folio_order(sp);
+
+		mod_node_page_state(folio_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
 				    -(PAGE_SIZE << order));
-		__free_pages(sp, order);
+		__free_pages(folio_page(sp, 0), order);
 
 	}
 }
@@ -570,7 +572,7 @@ EXPORT_SYMBOL(kfree);
 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
 size_t __ksize(const void *block)
 {
-	struct page *sp;
+	struct folio *folio;
 	int align;
 	unsigned int *m;
 
@@ -578,9 +580,9 @@ size_t __ksize(const void *block)
 	if (unlikely(block == ZERO_SIZE_PTR))
 		return 0;
 
-	sp = virt_to_page(block);
-	if (unlikely(!PageSlab(sp)))
-		return page_size(sp);
+	folio = virt_to_folio(block);
+	if (unlikely(!folio_test_slab(folio)))
+		return folio_size(folio);
 
 	align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 	m = (unsigned int *)(block - align);
diff --git a/mm/slub.c b/mm/slub.c
index abe7db581d686607277e3112647e893fa6ccad4c..261474092e43e48eaa1fc1a1809b98485e2d87d9 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -48,7 +48,7 @@
  *   1. slab_mutex (Global Mutex)
  *   2. node->list_lock (Spinlock)
  *   3. kmem_cache->cpu_slab->lock (Local lock)
- *   4. slab_lock(page) (Only on some arches or for debugging)
+ *   4. slab_lock(slab) (Only on some arches or for debugging)
  *   5. object_map_lock (Only for debugging)
  *
  *   slab_mutex
@@ -64,19 +64,19 @@
  *
  *   The slab_lock is only used for debugging and on arches that do not
  *   have the ability to do a cmpxchg_double. It only protects:
- *	A. page->freelist	-> List of object free in a page
- *	B. page->inuse		-> Number of objects in use
- *	C. page->objects	-> Number of objects in page
- *	D. page->frozen		-> frozen state
+ *	A. slab->freelist	-> List of free objects in a slab
+ *	B. slab->inuse		-> Number of objects in use
+ *	C. slab->objects	-> Number of objects in slab
+ *	D. slab->frozen		-> frozen state
  *
  *   Frozen slabs
  *
  *   If a slab is frozen then it is exempt from list management. It is not
  *   on any list except per cpu partial list. The processor that froze the
- *   slab is the one who can perform list operations on the page. Other
+ *   slab is the one who can perform list operations on the slab. Other
  *   processors may put objects onto the freelist but the processor that
  *   froze the slab is the only one that can retrieve the objects from the
- *   page's freelist.
+ *   slab's freelist.
  *
  *   list_lock
  *
@@ -135,7 +135,7 @@
  * minimal so we rely on the page allocators per cpu caches for
  * fast frees and allocs.
  *
- * page->frozen		The slab is frozen and exempt from list processing.
+ * slab->frozen		The slab is frozen and exempt from list processing.
  * 			This means that the slab is dedicated to a purpose
  * 			such as satisfying allocations for a specific
  * 			processor. Objects may be freed in the slab while
@@ -250,7 +250,7 @@ static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 
 #define OO_SHIFT	16
 #define OO_MASK		((1 << OO_SHIFT) - 1)
-#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
+#define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
 
 /* Internal SLUB flags */
 /* Poison object */
@@ -417,18 +417,18 @@ static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
 #ifdef CONFIG_SLUB_CPU_PARTIAL
 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
 {
-	unsigned int nr_pages;
+	unsigned int nr_slabs;
 
 	s->cpu_partial = nr_objects;
 
 	/*
 	 * We take the number of objects but actually limit the number of
-	 * pages on the per cpu partial list, in order to limit excessive
-	 * growth of the list. For simplicity we assume that the pages will
+	 * slabs on the per cpu partial list, in order to limit excessive
+	 * growth of the list. For simplicity we assume that the slabs will
 	 * be half-full.
 	 */
-	nr_pages = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
-	s->cpu_partial_pages = nr_pages;
+	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
+	s->cpu_partial_slabs = nr_slabs;
 }
 #else
 static inline void
@@ -440,28 +440,32 @@ slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
 /*
  * Per slab locking using the pagelock
  */
-static __always_inline void __slab_lock(struct page *page)
+static __always_inline void __slab_lock(struct slab *slab)
 {
+	struct page *page = slab_page(slab);
+
 	VM_BUG_ON_PAGE(PageTail(page), page);
 	bit_spin_lock(PG_locked, &page->flags);
 }
 
-static __always_inline void __slab_unlock(struct page *page)
+static __always_inline void __slab_unlock(struct slab *slab)
 {
+	struct page *page = slab_page(slab);
+
 	VM_BUG_ON_PAGE(PageTail(page), page);
 	__bit_spin_unlock(PG_locked, &page->flags);
 }
 
-static __always_inline void slab_lock(struct page *page, unsigned long *flags)
+static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
 {
 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
 		local_irq_save(*flags);
-	__slab_lock(page);
+	__slab_lock(slab);
 }
 
-static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
+static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
 {
-	__slab_unlock(page);
+	__slab_unlock(slab);
 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
 		local_irq_restore(*flags);
 }
@@ -471,7 +475,7 @@ static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
  * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
  * so we disable interrupts as part of slab_[un]lock().
  */
-static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
+static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
 		void *freelist_old, unsigned long counters_old,
 		void *freelist_new, unsigned long counters_new,
 		const char *n)
@@ -481,7 +485,7 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page
 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 	if (s->flags & __CMPXCHG_DOUBLE) {
-		if (cmpxchg_double(&page->freelist, &page->counters,
+		if (cmpxchg_double(&slab->freelist, &slab->counters,
 				   freelist_old, counters_old,
 				   freelist_new, counters_new))
 			return true;
@@ -491,15 +495,15 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page
 		/* init to 0 to prevent spurious warnings */
 		unsigned long flags = 0;
 
-		slab_lock(page, &flags);
-		if (page->freelist == freelist_old &&
-					page->counters == counters_old) {
-			page->freelist = freelist_new;
-			page->counters = counters_new;
-			slab_unlock(page, &flags);
+		slab_lock(slab, &flags);
+		if (slab->freelist == freelist_old &&
+					slab->counters == counters_old) {
+			slab->freelist = freelist_new;
+			slab->counters = counters_new;
+			slab_unlock(slab, &flags);
 			return true;
 		}
-		slab_unlock(page, &flags);
+		slab_unlock(slab, &flags);
 	}
 
 	cpu_relax();
@@ -512,7 +516,7 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page
 	return false;
 }
 
-static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
+static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
 		void *freelist_old, unsigned long counters_old,
 		void *freelist_new, unsigned long counters_new,
 		const char *n)
@@ -520,7 +524,7 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 	if (s->flags & __CMPXCHG_DOUBLE) {
-		if (cmpxchg_double(&page->freelist, &page->counters,
+		if (cmpxchg_double(&slab->freelist, &slab->counters,
 				   freelist_old, counters_old,
 				   freelist_new, counters_new))
 			return true;
@@ -530,16 +534,16 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 		unsigned long flags;
 
 		local_irq_save(flags);
-		__slab_lock(page);
-		if (page->freelist == freelist_old &&
-					page->counters == counters_old) {
-			page->freelist = freelist_new;
-			page->counters = counters_new;
-			__slab_unlock(page);
+		__slab_lock(slab);
+		if (slab->freelist == freelist_old &&
+					slab->counters == counters_old) {
+			slab->freelist = freelist_new;
+			slab->counters = counters_new;
+			__slab_unlock(slab);
 			local_irq_restore(flags);
 			return true;
 		}
-		__slab_unlock(page);
+		__slab_unlock(slab);
 		local_irq_restore(flags);
 	}
 
@@ -558,14 +562,14 @@ static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
 static DEFINE_RAW_SPINLOCK(object_map_lock);
 
 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
-		       struct page *page)
+		       struct slab *slab)
 {
-	void *addr = page_address(page);
+	void *addr = slab_address(slab);
 	void *p;
 
-	bitmap_zero(obj_map, page->objects);
+	bitmap_zero(obj_map, slab->objects);
 
-	for (p = page->freelist; p; p = get_freepointer(s, p))
+	for (p = slab->freelist; p; p = get_freepointer(s, p))
 		set_bit(__obj_to_index(s, addr, p), obj_map);
 }
 
@@ -590,19 +594,19 @@ static inline bool slab_add_kunit_errors(void) { return false; }
 #endif
 
 /*
- * Determine a map of object in use on a page.
+ * Determine a map of objects in use in a slab.
  *
- * Node listlock must be held to guarantee that the page does
+ * Node listlock must be held to guarantee that the slab does
  * not vanish from under us.
  */
-static unsigned long *get_map(struct kmem_cache *s, struct page *page)
+static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
 	__acquires(&object_map_lock)
 {
 	VM_BUG_ON(!irqs_disabled());
 
 	raw_spin_lock(&object_map_lock);
 
-	__fill_map(object_map, s, page);
+	__fill_map(object_map, s, slab);
 
 	return object_map;
 }
@@ -663,17 +667,17 @@ static inline void metadata_access_disable(void)
 
 /* Verify that a pointer has an address that is valid within a slab page */
 static inline int check_valid_pointer(struct kmem_cache *s,
-				struct page *page, void *object)
+				struct slab *slab, void *object)
 {
 	void *base;
 
 	if (!object)
 		return 1;
 
-	base = page_address(page);
+	base = slab_address(slab);
 	object = kasan_reset_tag(object);
 	object = restore_red_left(s, object);
-	if (object < base || object >= base + page->objects * s->size ||
+	if (object < base || object >= base + slab->objects * s->size ||
 		(object - base) % s->size) {
 		return 0;
 	}
@@ -784,12 +788,13 @@ void print_tracking(struct kmem_cache *s, void *object)
 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
 }
 
-static void print_page_info(struct page *page)
+static void print_slab_info(const struct slab *slab)
 {
-	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
-	       page, page->objects, page->inuse, page->freelist,
-	       &page->flags);
+	struct folio *folio = (struct folio *)slab_folio(slab);
 
+	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
+	       slab, slab->objects, slab->inuse, slab->freelist,
+	       folio_flags(folio, 0));
 }
 
 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
@@ -822,28 +827,14 @@ static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 	va_end(args);
 }
 
-static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
-			       void **freelist, void *nextfree)
-{
-	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
-	    !check_valid_pointer(s, page, nextfree) && freelist) {
-		object_err(s, page, *freelist, "Freechain corrupt");
-		*freelist = NULL;
-		slab_fix(s, "Isolate corrupted freechain");
-		return true;
-	}
-
-	return false;
-}
-
-static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
+static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
 {
 	unsigned int off;	/* Offset of last byte */
-	u8 *addr = page_address(page);
+	u8 *addr = slab_address(slab);
 
 	print_tracking(s, p);
 
-	print_page_info(page);
+	print_slab_info(slab);
 
 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
 	       p, p - addr, get_freepointer(s, p));
@@ -875,18 +866,32 @@ static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 	dump_stack();
 }
 
-void object_err(struct kmem_cache *s, struct page *page,
+static void object_err(struct kmem_cache *s, struct slab *slab,
 			u8 *object, char *reason)
 {
 	if (slab_add_kunit_errors())
 		return;
 
 	slab_bug(s, "%s", reason);
-	print_trailer(s, page, object);
+	print_trailer(s, slab, object);
 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 }
 
-static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
+static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
+			       void **freelist, void *nextfree)
+{
+	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
+	    !check_valid_pointer(s, slab, nextfree) && freelist) {
+		object_err(s, slab, *freelist, "Freechain corrupt");
+		*freelist = NULL;
+		slab_fix(s, "Isolate corrupted freechain");
+		return true;
+	}
+
+	return false;
+}
+
+static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
 			const char *fmt, ...)
 {
 	va_list args;
@@ -899,7 +904,7 @@ static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
 	vsnprintf(buf, sizeof(buf), fmt, args);
 	va_end(args);
 	slab_bug(s, "%s", buf);
-	print_page_info(page);
+	print_slab_info(slab);
 	dump_stack();
 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 }
@@ -927,13 +932,13 @@ static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 	memset(from, data, to - from);
 }
 
-static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
+static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
 			u8 *object, char *what,
 			u8 *start, unsigned int value, unsigned int bytes)
 {
 	u8 *fault;
 	u8 *end;
-	u8 *addr = page_address(page);
+	u8 *addr = slab_address(slab);
 
 	metadata_access_enable();
 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
@@ -952,7 +957,7 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
 					fault, end - 1, fault - addr,
 					fault[0], value);
-	print_trailer(s, page, object);
+	print_trailer(s, slab, object);
 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 
 skip_bug_print:
@@ -998,7 +1003,7 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  * may be used with merged slabcaches.
  */
 
-static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
+static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
 {
 	unsigned long off = get_info_end(s);	/* The end of info */
 
@@ -1011,12 +1016,12 @@ static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 	if (size_from_object(s) == off)
 		return 1;
 
-	return check_bytes_and_report(s, page, p, "Object padding",
+	return check_bytes_and_report(s, slab, p, "Object padding",
 			p + off, POISON_INUSE, size_from_object(s) - off);
 }
 
 /* Check the pad bytes at the end of a slab page */
-static int slab_pad_check(struct kmem_cache *s, struct page *page)
+static int slab_pad_check(struct kmem_cache *s, struct slab *slab)
 {
 	u8 *start;
 	u8 *fault;
@@ -1028,8 +1033,8 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
 	if (!(s->flags & SLAB_POISON))
 		return 1;
 
-	start = page_address(page);
-	length = page_size(page);
+	start = slab_address(slab);
+	length = slab_size(slab);
 	end = start + length;
 	remainder = length % s->size;
 	if (!remainder)
@@ -1044,7 +1049,7 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
 	while (end > fault && end[-1] == POISON_INUSE)
 		end--;
 
-	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
+	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
 			fault, end - 1, fault - start);
 	print_section(KERN_ERR, "Padding ", pad, remainder);
 
@@ -1052,23 +1057,23 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
 	return 0;
 }
 
-static int check_object(struct kmem_cache *s, struct page *page,
+static int check_object(struct kmem_cache *s, struct slab *slab,
 					void *object, u8 val)
 {
 	u8 *p = object;
 	u8 *endobject = object + s->object_size;
 
 	if (s->flags & SLAB_RED_ZONE) {
-		if (!check_bytes_and_report(s, page, object, "Left Redzone",
+		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
 			object - s->red_left_pad, val, s->red_left_pad))
 			return 0;
 
-		if (!check_bytes_and_report(s, page, object, "Right Redzone",
+		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
 			endobject, val, s->inuse - s->object_size))
 			return 0;
 	} else {
 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
-			check_bytes_and_report(s, page, p, "Alignment padding",
+			check_bytes_and_report(s, slab, p, "Alignment padding",
 				endobject, POISON_INUSE,
 				s->inuse - s->object_size);
 		}
@@ -1076,15 +1081,15 @@ static int check_object(struct kmem_cache *s, struct page *page,
 
 	if (s->flags & SLAB_POISON) {
 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
-			(!check_bytes_and_report(s, page, p, "Poison", p,
+			(!check_bytes_and_report(s, slab, p, "Poison", p,
 					POISON_FREE, s->object_size - 1) ||
-			 !check_bytes_and_report(s, page, p, "End Poison",
+			 !check_bytes_and_report(s, slab, p, "End Poison",
 				p + s->object_size - 1, POISON_END, 1)))
 			return 0;
 		/*
 		 * check_pad_bytes cleans up on its own.
 		 */
-		check_pad_bytes(s, page, p);
+		check_pad_bytes(s, slab, p);
 	}
 
 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
@@ -1095,8 +1100,8 @@ static int check_object(struct kmem_cache *s, struct page *page,
 		return 1;
 
 	/* Check free pointer validity */
-	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
-		object_err(s, page, p, "Freepointer corrupt");
+	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
+		object_err(s, slab, p, "Freepointer corrupt");
 		/*
 		 * No choice but to zap it and thus lose the remainder
 		 * of the free objects in this slab. May cause
@@ -1108,55 +1113,55 @@ static int check_object(struct kmem_cache *s, struct page *page,
 	return 1;
 }
 
-static int check_slab(struct kmem_cache *s, struct page *page)
+static int check_slab(struct kmem_cache *s, struct slab *slab)
 {
 	int maxobj;
 
-	if (!PageSlab(page)) {
-		slab_err(s, page, "Not a valid slab page");
+	if (!folio_test_slab(slab_folio(slab))) {
+		slab_err(s, slab, "Not a valid slab page");
 		return 0;
 	}
 
-	maxobj = order_objects(compound_order(page), s->size);
-	if (page->objects > maxobj) {
-		slab_err(s, page, "objects %u > max %u",
-			page->objects, maxobj);
+	maxobj = order_objects(slab_order(slab), s->size);
+	if (slab->objects > maxobj) {
+		slab_err(s, slab, "objects %u > max %u",
+			slab->objects, maxobj);
 		return 0;
 	}
-	if (page->inuse > page->objects) {
-		slab_err(s, page, "inuse %u > max %u",
-			page->inuse, page->objects);
+	if (slab->inuse > slab->objects) {
+		slab_err(s, slab, "inuse %u > max %u",
+			slab->inuse, slab->objects);
 		return 0;
 	}
 	/* Slab_pad_check fixes things up after itself */
-	slab_pad_check(s, page);
+	slab_pad_check(s, slab);
 	return 1;
 }
 
 /*
- * Determine if a certain object on a page is on the freelist. Must hold the
+ * Determine if a certain object in a slab is on the freelist. Must hold the
  * slab lock to guarantee that the chains are in a consistent state.
  */
-static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
+static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
 {
 	int nr = 0;
 	void *fp;
 	void *object = NULL;
 	int max_objects;
 
-	fp = page->freelist;
-	while (fp && nr <= page->objects) {
+	fp = slab->freelist;
+	while (fp && nr <= slab->objects) {
 		if (fp == search)
 			return 1;
-		if (!check_valid_pointer(s, page, fp)) {
+		if (!check_valid_pointer(s, slab, fp)) {
 			if (object) {
-				object_err(s, page, object,
+				object_err(s, slab, object,
 					"Freechain corrupt");
 				set_freepointer(s, object, NULL);
 			} else {
-				slab_err(s, page, "Freepointer corrupt");
-				page->freelist = NULL;
-				page->inuse = page->objects;
+				slab_err(s, slab, "Freepointer corrupt");
+				slab->freelist = NULL;
+				slab->inuse = slab->objects;
 				slab_fix(s, "Freelist cleared");
 				return 0;
 			}
@@ -1167,34 +1172,34 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 		nr++;
 	}
 
-	max_objects = order_objects(compound_order(page), s->size);
+	max_objects = order_objects(slab_order(slab), s->size);
 	if (max_objects > MAX_OBJS_PER_PAGE)
 		max_objects = MAX_OBJS_PER_PAGE;
 
-	if (page->objects != max_objects) {
-		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
-			 page->objects, max_objects);
-		page->objects = max_objects;
+	if (slab->objects != max_objects) {
+		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
+			 slab->objects, max_objects);
+		slab->objects = max_objects;
 		slab_fix(s, "Number of objects adjusted");
 	}
-	if (page->inuse != page->objects - nr) {
-		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
-			 page->inuse, page->objects - nr);
-		page->inuse = page->objects - nr;
+	if (slab->inuse != slab->objects - nr) {
+		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
+			 slab->inuse, slab->objects - nr);
+		slab->inuse = slab->objects - nr;
 		slab_fix(s, "Object count adjusted");
 	}
 	return search == NULL;
 }
 
-static void trace(struct kmem_cache *s, struct page *page, void *object,
+static void trace(struct kmem_cache *s, struct slab *slab, void *object,
 								int alloc)
 {
 	if (s->flags & SLAB_TRACE) {
 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 			s->name,
 			alloc ? "alloc" : "free",
-			object, page->inuse,
-			page->freelist);
+			object, slab->inuse,
+			slab->freelist);
 
 		if (!alloc)
 			print_section(KERN_INFO, "Object ", (void *)object,
@@ -1208,22 +1213,22 @@ static void trace(struct kmem_cache *s, struct page *page, void *object,
  * Tracking of fully allocated slabs for debugging purposes.
  */
 static void add_full(struct kmem_cache *s,
-	struct kmem_cache_node *n, struct page *page)
+	struct kmem_cache_node *n, struct slab *slab)
 {
 	if (!(s->flags & SLAB_STORE_USER))
 		return;
 
 	lockdep_assert_held(&n->list_lock);
-	list_add(&page->slab_list, &n->full);
+	list_add(&slab->slab_list, &n->full);
 }
 
-static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
+static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
 {
 	if (!(s->flags & SLAB_STORE_USER))
 		return;
 
 	lockdep_assert_held(&n->list_lock);
-	list_del(&page->slab_list);
+	list_del(&slab->slab_list);
 }
 
 /* Tracking of the number of slabs for debugging purposes */
@@ -1263,7 +1268,7 @@ static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
 }
 
 /* Object debug checks for alloc/free paths */
-static void setup_object_debug(struct kmem_cache *s, struct page *page,
+static void setup_object_debug(struct kmem_cache *s, struct slab *slab,
 								void *object)
 {
 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
@@ -1274,89 +1279,89 @@ static void setup_object_debug(struct kmem_cache *s, struct page *page,
 }
 
 static
-void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
+void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
 {
 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
 		return;
 
 	metadata_access_enable();
-	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
+	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
 	metadata_access_disable();
 }
 
 static inline int alloc_consistency_checks(struct kmem_cache *s,
-					struct page *page, void *object)
+					struct slab *slab, void *object)
 {
-	if (!check_slab(s, page))
+	if (!check_slab(s, slab))
 		return 0;
 
-	if (!check_valid_pointer(s, page, object)) {
-		object_err(s, page, object, "Freelist Pointer check fails");
+	if (!check_valid_pointer(s, slab, object)) {
+		object_err(s, slab, object, "Freelist Pointer check fails");
 		return 0;
 	}
 
-	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
+	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
 		return 0;
 
 	return 1;
 }
 
 static noinline int alloc_debug_processing(struct kmem_cache *s,
-					struct page *page,
+					struct slab *slab,
 					void *object, unsigned long addr)
 {
 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
-		if (!alloc_consistency_checks(s, page, object))
+		if (!alloc_consistency_checks(s, slab, object))
 			goto bad;
 	}
 
 	/* Success perform special debug activities for allocs */
 	if (s->flags & SLAB_STORE_USER)
 		set_track(s, object, TRACK_ALLOC, addr);
-	trace(s, page, object, 1);
+	trace(s, slab, object, 1);
 	init_object(s, object, SLUB_RED_ACTIVE);
 	return 1;
 
 bad:
-	if (PageSlab(page)) {
+	if (folio_test_slab(slab_folio(slab))) {
 		/*
 		 * If this is a slab page then lets do the best we can
 		 * to avoid issues in the future. Marking all objects
 		 * as used avoids touching the remaining objects.
 		 */
 		slab_fix(s, "Marking all objects used");
-		page->inuse = page->objects;
-		page->freelist = NULL;
+		slab->inuse = slab->objects;
+		slab->freelist = NULL;
 	}
 	return 0;
 }
 
 static inline int free_consistency_checks(struct kmem_cache *s,
-		struct page *page, void *object, unsigned long addr)
+		struct slab *slab, void *object, unsigned long addr)
 {
-	if (!check_valid_pointer(s, page, object)) {
-		slab_err(s, page, "Invalid object pointer 0x%p", object);
+	if (!check_valid_pointer(s, slab, object)) {
+		slab_err(s, slab, "Invalid object pointer 0x%p", object);
 		return 0;
 	}
 
-	if (on_freelist(s, page, object)) {
-		object_err(s, page, object, "Object already free");
+	if (on_freelist(s, slab, object)) {
+		object_err(s, slab, object, "Object already free");
 		return 0;
 	}
 
-	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
+	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
 		return 0;
 
-	if (unlikely(s != page->slab_cache)) {
-		if (!PageSlab(page)) {
-			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
+	if (unlikely(s != slab->slab_cache)) {
+		if (!folio_test_slab(slab_folio(slab))) {
+			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
 				 object);
-		} else if (!page->slab_cache) {
+		} else if (!slab->slab_cache) {
 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
 			       object);
 			dump_stack();
 		} else
-			object_err(s, page, object,
+			object_err(s, slab, object,
 					"page slab pointer corrupt.");
 		return 0;
 	}
@@ -1365,21 +1370,21 @@ static inline int free_consistency_checks(struct kmem_cache *s,
 
 /* Supports checking bulk free of a constructed freelist */
 static noinline int free_debug_processing(
-	struct kmem_cache *s, struct page *page,
+	struct kmem_cache *s, struct slab *slab,
 	void *head, void *tail, int bulk_cnt,
 	unsigned long addr)
 {
-	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
+	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
 	void *object = head;
 	int cnt = 0;
 	unsigned long flags, flags2;
 	int ret = 0;
 
 	spin_lock_irqsave(&n->list_lock, flags);
-	slab_lock(page, &flags2);
+	slab_lock(slab, &flags2);
 
 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
-		if (!check_slab(s, page))
+		if (!check_slab(s, slab))
 			goto out;
 	}
 
@@ -1387,13 +1392,13 @@ static noinline int free_debug_processing(
 	cnt++;
 
 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
-		if (!free_consistency_checks(s, page, object, addr))
+		if (!free_consistency_checks(s, slab, object, addr))
 			goto out;
 	}
 
 	if (s->flags & SLAB_STORE_USER)
 		set_track(s, object, TRACK_FREE, addr);
-	trace(s, page, object, 0);
+	trace(s, slab, object, 0);
 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
 	init_object(s, object, SLUB_RED_INACTIVE);
 
@@ -1406,10 +1411,10 @@ static noinline int free_debug_processing(
 
 out:
 	if (cnt != bulk_cnt)
-		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
+		slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
 			 bulk_cnt, cnt);
 
-	slab_unlock(page, &flags2);
+	slab_unlock(slab, &flags2);
 	spin_unlock_irqrestore(&n->list_lock, flags);
 	if (!ret)
 		slab_fix(s, "Object at 0x%p not freed", object);
@@ -1624,26 +1629,26 @@ slab_flags_t kmem_cache_flags(unsigned int object_size,
 }
 #else /* !CONFIG_SLUB_DEBUG */
 static inline void setup_object_debug(struct kmem_cache *s,
-			struct page *page, void *object) {}
+			struct slab *slab, void *object) {}
 static inline
-void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
+void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
 
 static inline int alloc_debug_processing(struct kmem_cache *s,
-	struct page *page, void *object, unsigned long addr) { return 0; }
+	struct slab *slab, void *object, unsigned long addr) { return 0; }
 
 static inline int free_debug_processing(
-	struct kmem_cache *s, struct page *page,
+	struct kmem_cache *s, struct slab *slab,
 	void *head, void *tail, int bulk_cnt,
 	unsigned long addr) { return 0; }
 
-static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
+static inline int slab_pad_check(struct kmem_cache *s, struct slab *slab)
 			{ return 1; }
-static inline int check_object(struct kmem_cache *s, struct page *page,
+static inline int check_object(struct kmem_cache *s, struct slab *slab,
 			void *object, u8 val) { return 1; }
 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
-					struct page *page) {}
+					struct slab *slab) {}
 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
-					struct page *page) {}
+					struct slab *slab) {}
 slab_flags_t kmem_cache_flags(unsigned int object_size,
 	slab_flags_t flags, const char *name)
 {
@@ -1662,7 +1667,7 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node,
 static inline void dec_slabs_node(struct kmem_cache *s, int node,
 							int objects) {}
 
-static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
+static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
 			       void **freelist, void *nextfree)
 {
 	return false;
@@ -1767,10 +1772,10 @@ static inline bool slab_free_freelist_hook(struct kmem_cache *s,
 	return *head != NULL;
 }
 
-static void *setup_object(struct kmem_cache *s, struct page *page,
+static void *setup_object(struct kmem_cache *s, struct slab *slab,
 				void *object)
 {
-	setup_object_debug(s, page, object);
+	setup_object_debug(s, slab, object);
 	object = kasan_init_slab_obj(s, object);
 	if (unlikely(s->ctor)) {
 		kasan_unpoison_object_data(s, object);
@@ -1783,18 +1788,27 @@ static void *setup_object(struct kmem_cache *s, struct page *page,
 /*
  * Slab allocation and freeing
  */
-static inline struct page *alloc_slab_page(struct kmem_cache *s,
+static inline struct slab *alloc_slab_page(struct kmem_cache *s,
 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
 {
-	struct page *page;
+	struct folio *folio;
+	struct slab *slab;
 	unsigned int order = oo_order(oo);
 
 	if (node == NUMA_NO_NODE)
-		page = alloc_pages(flags, order);
+		folio = (struct folio *)alloc_pages(flags, order);
 	else
-		page = __alloc_pages_node(node, flags, order);
+		folio = (struct folio *)__alloc_pages_node(node, flags, order);
+
+	if (!folio)
+		return NULL;
+
+	slab = folio_slab(folio);
+	__folio_set_slab(folio);
+	if (page_is_pfmemalloc(folio_page(folio, 0)))
+		slab_set_pfmemalloc(slab);
 
-	return page;
+	return slab;
 }
 
 #ifdef CONFIG_SLAB_FREELIST_RANDOM
@@ -1839,7 +1853,7 @@ static void __init init_freelist_randomization(void)
 }
 
 /* Get the next entry on the pre-computed freelist randomized */
-static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
+static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
 				unsigned long *pos, void *start,
 				unsigned long page_limit,
 				unsigned long freelist_count)
@@ -1861,32 +1875,32 @@ static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
 }
 
 /* Shuffle the single linked freelist based on a random pre-computed sequence */
-static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
+static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
 {
 	void *start;
 	void *cur;
 	void *next;
 	unsigned long idx, pos, page_limit, freelist_count;
 
-	if (page->objects < 2 || !s->random_seq)
+	if (slab->objects < 2 || !s->random_seq)
 		return false;
 
 	freelist_count = oo_objects(s->oo);
 	pos = get_random_int() % freelist_count;
 
-	page_limit = page->objects * s->size;
-	start = fixup_red_left(s, page_address(page));
+	page_limit = slab->objects * s->size;
+	start = fixup_red_left(s, slab_address(slab));
 
 	/* First entry is used as the base of the freelist */
-	cur = next_freelist_entry(s, page, &pos, start, page_limit,
+	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
 				freelist_count);
-	cur = setup_object(s, page, cur);
-	page->freelist = cur;
+	cur = setup_object(s, slab, cur);
+	slab->freelist = cur;
 
-	for (idx = 1; idx < page->objects; idx++) {
-		next = next_freelist_entry(s, page, &pos, start, page_limit,
+	for (idx = 1; idx < slab->objects; idx++) {
+		next = next_freelist_entry(s, slab, &pos, start, page_limit,
 			freelist_count);
-		next = setup_object(s, page, next);
+		next = setup_object(s, slab, next);
 		set_freepointer(s, cur, next);
 		cur = next;
 	}
@@ -1900,15 +1914,15 @@ static inline int init_cache_random_seq(struct kmem_cache *s)
 	return 0;
 }
 static inline void init_freelist_randomization(void) { }
-static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
+static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
 {
 	return false;
 }
 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
 
-static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
+static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
 {
-	struct page *page;
+	struct slab *slab;
 	struct kmem_cache_order_objects oo = s->oo;
 	gfp_t alloc_gfp;
 	void *start, *p, *next;
@@ -1927,63 +1941,60 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 
-	page = alloc_slab_page(s, alloc_gfp, node, oo);
-	if (unlikely(!page)) {
+	slab = alloc_slab_page(s, alloc_gfp, node, oo);
+	if (unlikely(!slab)) {
 		oo = s->min;
 		alloc_gfp = flags;
 		/*
 		 * Allocation may have failed due to fragmentation.
 		 * Try a lower order alloc if possible
 		 */
-		page = alloc_slab_page(s, alloc_gfp, node, oo);
-		if (unlikely(!page))
+		slab = alloc_slab_page(s, alloc_gfp, node, oo);
+		if (unlikely(!slab))
 			goto out;
 		stat(s, ORDER_FALLBACK);
 	}
 
-	page->objects = oo_objects(oo);
+	slab->objects = oo_objects(oo);
 
-	account_slab_page(page, oo_order(oo), s, flags);
+	account_slab(slab, oo_order(oo), s, flags);
 
-	page->slab_cache = s;
-	__SetPageSlab(page);
-	if (page_is_pfmemalloc(page))
-		SetPageSlabPfmemalloc(page);
+	slab->slab_cache = s;
 
-	kasan_poison_slab(page);
+	kasan_poison_slab(slab);
 
-	start = page_address(page);
+	start = slab_address(slab);
 
-	setup_page_debug(s, page, start);
+	setup_slab_debug(s, slab, start);
 
-	shuffle = shuffle_freelist(s, page);
+	shuffle = shuffle_freelist(s, slab);
 
 	if (!shuffle) {
 		start = fixup_red_left(s, start);
-		start = setup_object(s, page, start);
-		page->freelist = start;
-		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
+		start = setup_object(s, slab, start);
+		slab->freelist = start;
+		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
 			next = p + s->size;
-			next = setup_object(s, page, next);
+			next = setup_object(s, slab, next);
 			set_freepointer(s, p, next);
 			p = next;
 		}
 		set_freepointer(s, p, NULL);
 	}
 
-	page->inuse = page->objects;
-	page->frozen = 1;
+	slab->inuse = slab->objects;
+	slab->frozen = 1;
 
 out:
-	if (!page)
+	if (!slab)
 		return NULL;
 
-	inc_slabs_node(s, page_to_nid(page), page->objects);
+	inc_slabs_node(s, slab_nid(slab), slab->objects);
 
-	return page;
+	return slab;
 }
 
-static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
+static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
 {
 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
 		flags = kmalloc_fix_flags(flags);
@@ -1994,76 +2005,75 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
 }
 
-static void __free_slab(struct kmem_cache *s, struct page *page)
+static void __free_slab(struct kmem_cache *s, struct slab *slab)
 {
-	int order = compound_order(page);
+	struct folio *folio = slab_folio(slab);
+	int order = folio_order(folio);
 	int pages = 1 << order;
 
 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
 		void *p;
 
-		slab_pad_check(s, page);
-		for_each_object(p, s, page_address(page),
-						page->objects)
-			check_object(s, page, p, SLUB_RED_INACTIVE);
+		slab_pad_check(s, slab);
+		for_each_object(p, s, slab_address(slab), slab->objects)
+			check_object(s, slab, p, SLUB_RED_INACTIVE);
 	}
 
-	__ClearPageSlabPfmemalloc(page);
-	__ClearPageSlab(page);
-	/* In union with page->mapping where page allocator expects NULL */
-	page->slab_cache = NULL;
+	__slab_clear_pfmemalloc(slab);
+	__folio_clear_slab(folio);
+	folio->mapping = NULL;
 	if (current->reclaim_state)
 		current->reclaim_state->reclaimed_slab += pages;
-	unaccount_slab_page(page, order, s);
-	__free_pages(page, order);
+	unaccount_slab(slab, order, s);
+	__free_pages(folio_page(folio, 0), order);
 }
 
 static void rcu_free_slab(struct rcu_head *h)
 {
-	struct page *page = container_of(h, struct page, rcu_head);
+	struct slab *slab = container_of(h, struct slab, rcu_head);
 
-	__free_slab(page->slab_cache, page);
+	__free_slab(slab->slab_cache, slab);
 }
 
-static void free_slab(struct kmem_cache *s, struct page *page)
+static void free_slab(struct kmem_cache *s, struct slab *slab)
 {
 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
-		call_rcu(&page->rcu_head, rcu_free_slab);
+		call_rcu(&slab->rcu_head, rcu_free_slab);
 	} else
-		__free_slab(s, page);
+		__free_slab(s, slab);
 }
 
-static void discard_slab(struct kmem_cache *s, struct page *page)
+static void discard_slab(struct kmem_cache *s, struct slab *slab)
 {
-	dec_slabs_node(s, page_to_nid(page), page->objects);
-	free_slab(s, page);
+	dec_slabs_node(s, slab_nid(slab), slab->objects);
+	free_slab(s, slab);
 }
 
 /*
  * Management of partially allocated slabs.
  */
 static inline void
-__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
+__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
 {
 	n->nr_partial++;
 	if (tail == DEACTIVATE_TO_TAIL)
-		list_add_tail(&page->slab_list, &n->partial);
+		list_add_tail(&slab->slab_list, &n->partial);
 	else
-		list_add(&page->slab_list, &n->partial);
+		list_add(&slab->slab_list, &n->partial);
 }
 
 static inline void add_partial(struct kmem_cache_node *n,
-				struct page *page, int tail)
+				struct slab *slab, int tail)
 {
 	lockdep_assert_held(&n->list_lock);
-	__add_partial(n, page, tail);
+	__add_partial(n, slab, tail);
 }
 
 static inline void remove_partial(struct kmem_cache_node *n,
-					struct page *page)
+					struct slab *slab)
 {
 	lockdep_assert_held(&n->list_lock);
-	list_del(&page->slab_list);
+	list_del(&slab->slab_list);
 	n->nr_partial--;
 }
 
@@ -2074,12 +2084,12 @@ static inline void remove_partial(struct kmem_cache_node *n,
  * Returns a list of objects or NULL if it fails.
  */
 static inline void *acquire_slab(struct kmem_cache *s,
-		struct kmem_cache_node *n, struct page *page,
+		struct kmem_cache_node *n, struct slab *slab,
 		int mode)
 {
 	void *freelist;
 	unsigned long counters;
-	struct page new;
+	struct slab new;
 
 	lockdep_assert_held(&n->list_lock);
 
@@ -2088,11 +2098,11 @@ static inline void *acquire_slab(struct kmem_cache *s,
 	 * The old freelist is the list of objects for the
 	 * per cpu allocation list.
 	 */
-	freelist = page->freelist;
-	counters = page->counters;
+	freelist = slab->freelist;
+	counters = slab->counters;
 	new.counters = counters;
 	if (mode) {
-		new.inuse = page->objects;
+		new.inuse = slab->objects;
 		new.freelist = NULL;
 	} else {
 		new.freelist = freelist;
@@ -2101,35 +2111,35 @@ static inline void *acquire_slab(struct kmem_cache *s,
 	VM_BUG_ON(new.frozen);
 	new.frozen = 1;
 
-	if (!__cmpxchg_double_slab(s, page,
+	if (!__cmpxchg_double_slab(s, slab,
 			freelist, counters,
 			new.freelist, new.counters,
 			"acquire_slab"))
 		return NULL;
 
-	remove_partial(n, page);
+	remove_partial(n, slab);
 	WARN_ON(!freelist);
 	return freelist;
 }
 
 #ifdef CONFIG_SLUB_CPU_PARTIAL
-static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
+static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
 #else
-static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
+static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
 				   int drain) { }
 #endif
-static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
+static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
 
 /*
  * Try to allocate a partial slab from a specific node.
  */
 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
-			      struct page **ret_page, gfp_t gfpflags)
+			      struct slab **ret_slab, gfp_t gfpflags)
 {
-	struct page *page, *page2;
+	struct slab *slab, *slab2;
 	void *object = NULL;
 	unsigned long flags;
-	unsigned int partial_pages = 0;
+	unsigned int partial_slabs = 0;
 
 	/*
 	 * Racy check. If we mistakenly see no partial slabs then we
@@ -2141,28 +2151,28 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
 		return NULL;
 
 	spin_lock_irqsave(&n->list_lock, flags);
-	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
+	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
 		void *t;
 
-		if (!pfmemalloc_match(page, gfpflags))
+		if (!pfmemalloc_match(slab, gfpflags))
 			continue;
 
-		t = acquire_slab(s, n, page, object == NULL);
+		t = acquire_slab(s, n, slab, object == NULL);
 		if (!t)
 			break;
 
 		if (!object) {
-			*ret_page = page;
+			*ret_slab = slab;
 			stat(s, ALLOC_FROM_PARTIAL);
 			object = t;
 		} else {
-			put_cpu_partial(s, page, 0);
+			put_cpu_partial(s, slab, 0);
 			stat(s, CPU_PARTIAL_NODE);
-			partial_pages++;
+			partial_slabs++;
 		}
 #ifdef CONFIG_SLUB_CPU_PARTIAL
 		if (!kmem_cache_has_cpu_partial(s)
-			|| partial_pages > s->cpu_partial_pages / 2)
+			|| partial_slabs > s->cpu_partial_slabs / 2)
 			break;
 #else
 		break;
@@ -2174,10 +2184,10 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
 }
 
 /*
- * Get a page from somewhere. Search in increasing NUMA distances.
+ * Get a slab from somewhere. Search in increasing NUMA distances.
  */
 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
-			     struct page **ret_page)
+			     struct slab **ret_slab)
 {
 #ifdef CONFIG_NUMA
 	struct zonelist *zonelist;
@@ -2219,7 +2229,7 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
 
 			if (n && cpuset_zone_allowed(zone, flags) &&
 					n->nr_partial > s->min_partial) {
-				object = get_partial_node(s, n, ret_page, flags);
+				object = get_partial_node(s, n, ret_slab, flags);
 				if (object) {
 					/*
 					 * Don't check read_mems_allowed_retry()
@@ -2238,10 +2248,10 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
 }
 
 /*
- * Get a partial page, lock it and return it.
+ * Get a partial slab, lock it and return it.
  */
 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
-			 struct page **ret_page)
+			 struct slab **ret_slab)
 {
 	void *object;
 	int searchnode = node;
@@ -2249,11 +2259,11 @@ static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
 	if (node == NUMA_NO_NODE)
 		searchnode = numa_mem_id();
 
-	object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
+	object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
 	if (object || node != NUMA_NO_NODE)
 		return object;
 
-	return get_any_partial(s, flags, ret_page);
+	return get_any_partial(s, flags, ret_slab);
 }
 
 #ifdef CONFIG_PREEMPTION
@@ -2330,25 +2340,25 @@ static void init_kmem_cache_cpus(struct kmem_cache *s)
 }
 
 /*
- * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
+ * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
  * unfreezes the slabs and puts it on the proper list.
  * Assumes the slab has been already safely taken away from kmem_cache_cpu
  * by the caller.
  */
-static void deactivate_slab(struct kmem_cache *s, struct page *page,
+static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
 			    void *freelist)
 {
 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
-	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
+	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
 	int lock = 0, free_delta = 0;
 	enum slab_modes l = M_NONE, m = M_NONE;
 	void *nextfree, *freelist_iter, *freelist_tail;
 	int tail = DEACTIVATE_TO_HEAD;
 	unsigned long flags = 0;
-	struct page new;
-	struct page old;
+	struct slab new;
+	struct slab old;
 
-	if (page->freelist) {
+	if (slab->freelist) {
 		stat(s, DEACTIVATE_REMOTE_FREES);
 		tail = DEACTIVATE_TO_TAIL;
 	}
@@ -2367,7 +2377,7 @@ static void deactivate_slab(struct kmem_cache *s, struct page *page,
 		 * 'freelist_iter' is already corrupted.  So isolate all objects
 		 * starting at 'freelist_iter' by skipping them.
 		 */
-		if (freelist_corrupted(s, page, &freelist_iter, nextfree))
+		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
 			break;
 
 		freelist_tail = freelist_iter;
@@ -2377,25 +2387,25 @@ static void deactivate_slab(struct kmem_cache *s, struct page *page,
 	}
 
 	/*
-	 * Stage two: Unfreeze the page while splicing the per-cpu
-	 * freelist to the head of page's freelist.
+	 * Stage two: Unfreeze the slab while splicing the per-cpu
+	 * freelist to the head of slab's freelist.
 	 *
-	 * Ensure that the page is unfrozen while the list presence
+	 * Ensure that the slab is unfrozen while the list presence
 	 * reflects the actual number of objects during unfreeze.
 	 *
 	 * We setup the list membership and then perform a cmpxchg
-	 * with the count. If there is a mismatch then the page
-	 * is not unfrozen but the page is on the wrong list.
+	 * with the count. If there is a mismatch then the slab
+	 * is not unfrozen but the slab is on the wrong list.
 	 *
 	 * Then we restart the process which may have to remove
-	 * the page from the list that we just put it on again
+	 * the slab from the list that we just put it on again
 	 * because the number of objects in the slab may have
 	 * changed.
 	 */
 redo:
 
-	old.freelist = READ_ONCE(page->freelist);
-	old.counters = READ_ONCE(page->counters);
+	old.freelist = READ_ONCE(slab->freelist);
+	old.counters = READ_ONCE(slab->counters);
 	VM_BUG_ON(!old.frozen);
 
 	/* Determine target state of the slab */
@@ -2416,9 +2426,8 @@ static void deactivate_slab(struct kmem_cache *s, struct page *page,
 		if (!lock) {
 			lock = 1;
 			/*
-			 * Taking the spinlock removes the possibility
-			 * that acquire_slab() will see a slab page that
-			 * is frozen
+			 * Taking the spinlock removes the possibility that
+			 * acquire_slab() will see a slab that is frozen
 			 */
 			spin_lock_irqsave(&n->list_lock, flags);
 		}
@@ -2437,18 +2446,18 @@ static void deactivate_slab(struct kmem_cache *s, struct page *page,
 
 	if (l != m) {
 		if (l == M_PARTIAL)
-			remove_partial(n, page);
+			remove_partial(n, slab);
 		else if (l == M_FULL)
-			remove_full(s, n, page);
+			remove_full(s, n, slab);
 
 		if (m == M_PARTIAL)
-			add_partial(n, page, tail);
+			add_partial(n, slab, tail);
 		else if (m == M_FULL)
-			add_full(s, n, page);
+			add_full(s, n, slab);
 	}
 
 	l = m;
-	if (!cmpxchg_double_slab(s, page,
+	if (!cmpxchg_double_slab(s, slab,
 				old.freelist, old.counters,
 				new.freelist, new.counters,
 				"unfreezing slab"))
@@ -2463,26 +2472,26 @@ static void deactivate_slab(struct kmem_cache *s, struct page *page,
 		stat(s, DEACTIVATE_FULL);
 	else if (m == M_FREE) {
 		stat(s, DEACTIVATE_EMPTY);
-		discard_slab(s, page);
+		discard_slab(s, slab);
 		stat(s, FREE_SLAB);
 	}
 }
 
 #ifdef CONFIG_SLUB_CPU_PARTIAL
-static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
+static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
 {
 	struct kmem_cache_node *n = NULL, *n2 = NULL;
-	struct page *page, *discard_page = NULL;
+	struct slab *slab, *slab_to_discard = NULL;
 	unsigned long flags = 0;
 
-	while (partial_page) {
-		struct page new;
-		struct page old;
+	while (partial_slab) {
+		struct slab new;
+		struct slab old;
 
-		page = partial_page;
-		partial_page = page->next;
+		slab = partial_slab;
+		partial_slab = slab->next;
 
-		n2 = get_node(s, page_to_nid(page));
+		n2 = get_node(s, slab_nid(slab));
 		if (n != n2) {
 			if (n)
 				spin_unlock_irqrestore(&n->list_lock, flags);
@@ -2493,8 +2502,8 @@ static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
 
 		do {
 
-			old.freelist = page->freelist;
-			old.counters = page->counters;
+			old.freelist = slab->freelist;
+			old.counters = slab->counters;
 			VM_BUG_ON(!old.frozen);
 
 			new.counters = old.counters;
@@ -2502,16 +2511,16 @@ static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
 
 			new.frozen = 0;
 
-		} while (!__cmpxchg_double_slab(s, page,
+		} while (!__cmpxchg_double_slab(s, slab,
 				old.freelist, old.counters,
 				new.freelist, new.counters,
 				"unfreezing slab"));
 
 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
-			page->next = discard_page;
-			discard_page = page;
+			slab->next = slab_to_discard;
+			slab_to_discard = slab;
 		} else {
-			add_partial(n, page, DEACTIVATE_TO_TAIL);
+			add_partial(n, slab, DEACTIVATE_TO_TAIL);
 			stat(s, FREE_ADD_PARTIAL);
 		}
 	}
@@ -2519,12 +2528,12 @@ static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
 	if (n)
 		spin_unlock_irqrestore(&n->list_lock, flags);
 
-	while (discard_page) {
-		page = discard_page;
-		discard_page = discard_page->next;
+	while (slab_to_discard) {
+		slab = slab_to_discard;
+		slab_to_discard = slab_to_discard->next;
 
 		stat(s, DEACTIVATE_EMPTY);
-		discard_slab(s, page);
+		discard_slab(s, slab);
 		stat(s, FREE_SLAB);
 	}
 }
@@ -2534,73 +2543,73 @@ static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
  */
 static void unfreeze_partials(struct kmem_cache *s)
 {
-	struct page *partial_page;
+	struct slab *partial_slab;
 	unsigned long flags;
 
 	local_lock_irqsave(&s->cpu_slab->lock, flags);
-	partial_page = this_cpu_read(s->cpu_slab->partial);
+	partial_slab = this_cpu_read(s->cpu_slab->partial);
 	this_cpu_write(s->cpu_slab->partial, NULL);
 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 
-	if (partial_page)
-		__unfreeze_partials(s, partial_page);
+	if (partial_slab)
+		__unfreeze_partials(s, partial_slab);
 }
 
 static void unfreeze_partials_cpu(struct kmem_cache *s,
 				  struct kmem_cache_cpu *c)
 {
-	struct page *partial_page;
+	struct slab *partial_slab;
 
-	partial_page = slub_percpu_partial(c);
+	partial_slab = slub_percpu_partial(c);
 	c->partial = NULL;
 
-	if (partial_page)
-		__unfreeze_partials(s, partial_page);
+	if (partial_slab)
+		__unfreeze_partials(s, partial_slab);
 }
 
 /*
- * Put a page that was just frozen (in __slab_free|get_partial_node) into a
- * partial page slot if available.
+ * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
+ * partial slab slot if available.
  *
  * If we did not find a slot then simply move all the partials to the
  * per node partial list.
  */
-static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
+static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
 {
-	struct page *oldpage;
-	struct page *page_to_unfreeze = NULL;
+	struct slab *oldslab;
+	struct slab *slab_to_unfreeze = NULL;
 	unsigned long flags;
-	int pages = 0;
+	int slabs = 0;
 
 	local_lock_irqsave(&s->cpu_slab->lock, flags);
 
-	oldpage = this_cpu_read(s->cpu_slab->partial);
+	oldslab = this_cpu_read(s->cpu_slab->partial);
 
-	if (oldpage) {
-		if (drain && oldpage->pages >= s->cpu_partial_pages) {
+	if (oldslab) {
+		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
 			/*
 			 * Partial array is full. Move the existing set to the
 			 * per node partial list. Postpone the actual unfreezing
 			 * outside of the critical section.
 			 */
-			page_to_unfreeze = oldpage;
-			oldpage = NULL;
+			slab_to_unfreeze = oldslab;
+			oldslab = NULL;
 		} else {
-			pages = oldpage->pages;
+			slabs = oldslab->slabs;
 		}
 	}
 
-	pages++;
+	slabs++;
 
-	page->pages = pages;
-	page->next = oldpage;
+	slab->slabs = slabs;
+	slab->next = oldslab;
 
-	this_cpu_write(s->cpu_slab->partial, page);
+	this_cpu_write(s->cpu_slab->partial, slab);
 
 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 
-	if (page_to_unfreeze) {
-		__unfreeze_partials(s, page_to_unfreeze);
+	if (slab_to_unfreeze) {
+		__unfreeze_partials(s, slab_to_unfreeze);
 		stat(s, CPU_PARTIAL_DRAIN);
 	}
 }
@@ -2616,22 +2625,22 @@ static inline void unfreeze_partials_cpu(struct kmem_cache *s,
 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 {
 	unsigned long flags;
-	struct page *page;
+	struct slab *slab;
 	void *freelist;
 
 	local_lock_irqsave(&s->cpu_slab->lock, flags);
 
-	page = c->page;
+	slab = c->slab;
 	freelist = c->freelist;
 
-	c->page = NULL;
+	c->slab = NULL;
 	c->freelist = NULL;
 	c->tid = next_tid(c->tid);
 
 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 
-	if (page) {
-		deactivate_slab(s, page, freelist);
+	if (slab) {
+		deactivate_slab(s, slab, freelist);
 		stat(s, CPUSLAB_FLUSH);
 	}
 }
@@ -2640,14 +2649,14 @@ static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
 {
 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 	void *freelist = c->freelist;
-	struct page *page = c->page;
+	struct slab *slab = c->slab;
 
-	c->page = NULL;
+	c->slab = NULL;
 	c->freelist = NULL;
 	c->tid = next_tid(c->tid);
 
-	if (page) {
-		deactivate_slab(s, page, freelist);
+	if (slab) {
+		deactivate_slab(s, slab, freelist);
 		stat(s, CPUSLAB_FLUSH);
 	}
 
@@ -2676,7 +2685,7 @@ static void flush_cpu_slab(struct work_struct *w)
 	s = sfw->s;
 	c = this_cpu_ptr(s->cpu_slab);
 
-	if (c->page)
+	if (c->slab)
 		flush_slab(s, c);
 
 	unfreeze_partials(s);
@@ -2686,7 +2695,7 @@ static bool has_cpu_slab(int cpu, struct kmem_cache *s)
 {
 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 
-	return c->page || slub_percpu_partial(c);
+	return c->slab || slub_percpu_partial(c);
 }
 
 static DEFINE_MUTEX(flush_lock);
@@ -2748,19 +2757,19 @@ static int slub_cpu_dead(unsigned int cpu)
  * Check if the objects in a per cpu structure fit numa
  * locality expectations.
  */
-static inline int node_match(struct page *page, int node)
+static inline int node_match(struct slab *slab, int node)
 {
 #ifdef CONFIG_NUMA
-	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
+	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
 		return 0;
 #endif
 	return 1;
 }
 
 #ifdef CONFIG_SLUB_DEBUG
-static int count_free(struct page *page)
+static int count_free(struct slab *slab)
 {
-	return page->objects - page->inuse;
+	return slab->objects - slab->inuse;
 }
 
 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
@@ -2771,15 +2780,15 @@ static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
 
 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
 static unsigned long count_partial(struct kmem_cache_node *n,
-					int (*get_count)(struct page *))
+					int (*get_count)(struct slab *))
 {
 	unsigned long flags;
 	unsigned long x = 0;
-	struct page *page;
+	struct slab *slab;
 
 	spin_lock_irqsave(&n->list_lock, flags);
-	list_for_each_entry(page, &n->partial, slab_list)
-		x += get_count(page);
+	list_for_each_entry(slab, &n->partial, slab_list)
+		x += get_count(slab);
 	spin_unlock_irqrestore(&n->list_lock, flags);
 	return x;
 }
@@ -2822,54 +2831,41 @@ slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
 #endif
 }
 
-static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
+static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
 {
-	if (unlikely(PageSlabPfmemalloc(page)))
+	if (unlikely(slab_test_pfmemalloc(slab)))
 		return gfp_pfmemalloc_allowed(gfpflags);
 
 	return true;
 }
 
 /*
- * A variant of pfmemalloc_match() that tests page flags without asserting
- * PageSlab. Intended for opportunistic checks before taking a lock and
- * rechecking that nobody else freed the page under us.
- */
-static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
-{
-	if (unlikely(__PageSlabPfmemalloc(page)))
-		return gfp_pfmemalloc_allowed(gfpflags);
-
-	return true;
-}
-
-/*
- * Check the page->freelist of a page and either transfer the freelist to the
- * per cpu freelist or deactivate the page.
+ * Check the slab->freelist and either transfer the freelist to the
+ * per cpu freelist or deactivate the slab.
  *
- * The page is still frozen if the return value is not NULL.
+ * The slab is still frozen if the return value is not NULL.
  *
- * If this function returns NULL then the page has been unfrozen.
+ * If this function returns NULL then the slab has been unfrozen.
  */
-static inline void *get_freelist(struct kmem_cache *s, struct page *page)
+static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
 {
-	struct page new;
+	struct slab new;
 	unsigned long counters;
 	void *freelist;
 
 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
 
 	do {
-		freelist = page->freelist;
-		counters = page->counters;
+		freelist = slab->freelist;
+		counters = slab->counters;
 
 		new.counters = counters;
 		VM_BUG_ON(!new.frozen);
 
-		new.inuse = page->objects;
+		new.inuse = slab->objects;
 		new.frozen = freelist != NULL;
 
-	} while (!__cmpxchg_double_slab(s, page,
+	} while (!__cmpxchg_double_slab(s, slab,
 		freelist, counters,
 		NULL, new.counters,
 		"get_freelist"));
@@ -2900,15 +2896,15 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 			  unsigned long addr, struct kmem_cache_cpu *c)
 {
 	void *freelist;
-	struct page *page;
+	struct slab *slab;
 	unsigned long flags;
 
 	stat(s, ALLOC_SLOWPATH);
 
-reread_page:
+reread_slab:
 
-	page = READ_ONCE(c->page);
-	if (!page) {
+	slab = READ_ONCE(c->slab);
+	if (!slab) {
 		/*
 		 * if the node is not online or has no normal memory, just
 		 * ignore the node constraint
@@ -2920,7 +2916,7 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 	}
 redo:
 
-	if (unlikely(!node_match(page, node))) {
+	if (unlikely(!node_match(slab, node))) {
 		/*
 		 * same as above but node_match() being false already
 		 * implies node != NUMA_NO_NODE
@@ -2939,23 +2935,23 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
 	 * information when the page leaves the per-cpu allocator
 	 */
-	if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
+	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
 		goto deactivate_slab;
 
-	/* must check again c->page in case we got preempted and it changed */
+	/* must check again c->slab in case we got preempted and it changed */
 	local_lock_irqsave(&s->cpu_slab->lock, flags);
-	if (unlikely(page != c->page)) {
+	if (unlikely(slab != c->slab)) {
 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
-		goto reread_page;
+		goto reread_slab;
 	}
 	freelist = c->freelist;
 	if (freelist)
 		goto load_freelist;
 
-	freelist = get_freelist(s, page);
+	freelist = get_freelist(s, slab);
 
 	if (!freelist) {
-		c->page = NULL;
+		c->slab = NULL;
 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 		stat(s, DEACTIVATE_BYPASS);
 		goto new_slab;
@@ -2969,10 +2965,10 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 
 	/*
 	 * freelist is pointing to the list of objects to be used.
-	 * page is pointing to the page from which the objects are obtained.
-	 * That page must be frozen for per cpu allocations to work.
+	 * slab is pointing to the slab from which the objects are obtained.
+	 * That slab must be frozen for per cpu allocations to work.
 	 */
-	VM_BUG_ON(!c->page->frozen);
+	VM_BUG_ON(!c->slab->frozen);
 	c->freelist = get_freepointer(s, freelist);
 	c->tid = next_tid(c->tid);
 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
@@ -2981,23 +2977,23 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 deactivate_slab:
 
 	local_lock_irqsave(&s->cpu_slab->lock, flags);
-	if (page != c->page) {
+	if (slab != c->slab) {
 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
-		goto reread_page;
+		goto reread_slab;
 	}
 	freelist = c->freelist;
-	c->page = NULL;
+	c->slab = NULL;
 	c->freelist = NULL;
 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
-	deactivate_slab(s, page, freelist);
+	deactivate_slab(s, slab, freelist);
 
 new_slab:
 
 	if (slub_percpu_partial(c)) {
 		local_lock_irqsave(&s->cpu_slab->lock, flags);
-		if (unlikely(c->page)) {
+		if (unlikely(c->slab)) {
 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
-			goto reread_page;
+			goto reread_slab;
 		}
 		if (unlikely(!slub_percpu_partial(c))) {
 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
@@ -3005,8 +3001,8 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 			goto new_objects;
 		}
 
-		page = c->page = slub_percpu_partial(c);
-		slub_set_percpu_partial(c, page);
+		slab = c->slab = slub_percpu_partial(c);
+		slub_set_percpu_partial(c, slab);
 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 		stat(s, CPU_PARTIAL_ALLOC);
 		goto redo;
@@ -3014,32 +3010,32 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 
 new_objects:
 
-	freelist = get_partial(s, gfpflags, node, &page);
+	freelist = get_partial(s, gfpflags, node, &slab);
 	if (freelist)
-		goto check_new_page;
+		goto check_new_slab;
 
 	slub_put_cpu_ptr(s->cpu_slab);
-	page = new_slab(s, gfpflags, node);
+	slab = new_slab(s, gfpflags, node);
 	c = slub_get_cpu_ptr(s->cpu_slab);
 
-	if (unlikely(!page)) {
+	if (unlikely(!slab)) {
 		slab_out_of_memory(s, gfpflags, node);
 		return NULL;
 	}
 
 	/*
-	 * No other reference to the page yet so we can
+	 * No other reference to the slab yet so we can
 	 * muck around with it freely without cmpxchg
 	 */
-	freelist = page->freelist;
-	page->freelist = NULL;
+	freelist = slab->freelist;
+	slab->freelist = NULL;
 
 	stat(s, ALLOC_SLAB);
 
-check_new_page:
+check_new_slab:
 
 	if (kmem_cache_debug(s)) {
-		if (!alloc_debug_processing(s, page, freelist, addr)) {
+		if (!alloc_debug_processing(s, slab, freelist, addr)) {
 			/* Slab failed checks. Next slab needed */
 			goto new_slab;
 		} else {
@@ -3051,39 +3047,39 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 		}
 	}
 
-	if (unlikely(!pfmemalloc_match(page, gfpflags)))
+	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
 		/*
 		 * For !pfmemalloc_match() case we don't load freelist so that
 		 * we don't make further mismatched allocations easier.
 		 */
 		goto return_single;
 
-retry_load_page:
+retry_load_slab:
 
 	local_lock_irqsave(&s->cpu_slab->lock, flags);
-	if (unlikely(c->page)) {
+	if (unlikely(c->slab)) {
 		void *flush_freelist = c->freelist;
-		struct page *flush_page = c->page;
+		struct slab *flush_slab = c->slab;
 
-		c->page = NULL;
+		c->slab = NULL;
 		c->freelist = NULL;
 		c->tid = next_tid(c->tid);
 
 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 
-		deactivate_slab(s, flush_page, flush_freelist);
+		deactivate_slab(s, flush_slab, flush_freelist);
 
 		stat(s, CPUSLAB_FLUSH);
 
-		goto retry_load_page;
+		goto retry_load_slab;
 	}
-	c->page = page;
+	c->slab = slab;
 
 	goto load_freelist;
 
 return_single:
 
-	deactivate_slab(s, page, get_freepointer(s, freelist));
+	deactivate_slab(s, slab, get_freepointer(s, freelist));
 	return freelist;
 }
 
@@ -3140,7 +3136,7 @@ static __always_inline void *slab_alloc_node(struct kmem_cache *s,
 {
 	void *object;
 	struct kmem_cache_cpu *c;
-	struct page *page;
+	struct slab *slab;
 	unsigned long tid;
 	struct obj_cgroup *objcg = NULL;
 	bool init = false;
@@ -3172,9 +3168,9 @@ static __always_inline void *slab_alloc_node(struct kmem_cache *s,
 	/*
 	 * Irqless object alloc/free algorithm used here depends on sequence
 	 * of fetching cpu_slab's data. tid should be fetched before anything
-	 * on c to guarantee that object and page associated with previous tid
+	 * on c to guarantee that object and slab associated with previous tid
 	 * won't be used with current tid. If we fetch tid first, object and
-	 * page could be one associated with next tid and our alloc/free
+	 * slab could be one associated with next tid and our alloc/free
 	 * request will be failed. In this case, we will retry. So, no problem.
 	 */
 	barrier();
@@ -3187,7 +3183,7 @@ static __always_inline void *slab_alloc_node(struct kmem_cache *s,
 	 */
 
 	object = c->freelist;
-	page = c->page;
+	slab = c->slab;
 	/*
 	 * We cannot use the lockless fastpath on PREEMPT_RT because if a
 	 * slowpath has taken the local_lock_irqsave(), it is not protected
@@ -3196,7 +3192,7 @@ static __always_inline void *slab_alloc_node(struct kmem_cache *s,
 	 * there is a suitable cpu freelist.
 	 */
 	if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
-	    unlikely(!object || !page || !node_match(page, node))) {
+	    unlikely(!object || !slab || !node_match(slab, node))) {
 		object = __slab_alloc(s, gfpflags, node, addr, c);
 	} else {
 		void *next_object = get_freepointer_safe(s, object);
@@ -3298,17 +3294,17 @@ EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  * have a longer lifetime than the cpu slabs in most processing loads.
  *
  * So we still attempt to reduce cache line usage. Just take the slab
- * lock and free the item. If there is no additional partial page
+ * lock and free the item. If there is no additional partial slab
  * handling required then we can return immediately.
  */
-static void __slab_free(struct kmem_cache *s, struct page *page,
+static void __slab_free(struct kmem_cache *s, struct slab *slab,
 			void *head, void *tail, int cnt,
 			unsigned long addr)
 
 {
 	void *prior;
 	int was_frozen;
-	struct page new;
+	struct slab new;
 	unsigned long counters;
 	struct kmem_cache_node *n = NULL;
 	unsigned long flags;
@@ -3319,7 +3315,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
 		return;
 
 	if (kmem_cache_debug(s) &&
-	    !free_debug_processing(s, page, head, tail, cnt, addr))
+	    !free_debug_processing(s, slab, head, tail, cnt, addr))
 		return;
 
 	do {
@@ -3327,8 +3323,8 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
 			spin_unlock_irqrestore(&n->list_lock, flags);
 			n = NULL;
 		}
-		prior = page->freelist;
-		counters = page->counters;
+		prior = slab->freelist;
+		counters = slab->counters;
 		set_freepointer(s, tail, prior);
 		new.counters = counters;
 		was_frozen = new.frozen;
@@ -3347,7 +3343,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
 
 			} else { /* Needs to be taken off a list */
 
-				n = get_node(s, page_to_nid(page));
+				n = get_node(s, slab_nid(slab));
 				/*
 				 * Speculatively acquire the list_lock.
 				 * If the cmpxchg does not succeed then we may
@@ -3361,7 +3357,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
 			}
 		}
 
-	} while (!cmpxchg_double_slab(s, page,
+	} while (!cmpxchg_double_slab(s, slab,
 		prior, counters,
 		head, new.counters,
 		"__slab_free"));
@@ -3376,10 +3372,10 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
 			stat(s, FREE_FROZEN);
 		} else if (new.frozen) {
 			/*
-			 * If we just froze the page then put it onto the
+			 * If we just froze the slab then put it onto the
 			 * per cpu partial list.
 			 */
-			put_cpu_partial(s, page, 1);
+			put_cpu_partial(s, slab, 1);
 			stat(s, CPU_PARTIAL_FREE);
 		}
 
@@ -3394,8 +3390,8 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
 	 * then add it.
 	 */
 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
-		remove_full(s, n, page);
-		add_partial(n, page, DEACTIVATE_TO_TAIL);
+		remove_full(s, n, slab);
+		add_partial(n, slab, DEACTIVATE_TO_TAIL);
 		stat(s, FREE_ADD_PARTIAL);
 	}
 	spin_unlock_irqrestore(&n->list_lock, flags);
@@ -3406,16 +3402,16 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
 		/*
 		 * Slab on the partial list.
 		 */
-		remove_partial(n, page);
+		remove_partial(n, slab);
 		stat(s, FREE_REMOVE_PARTIAL);
 	} else {
 		/* Slab must be on the full list */
-		remove_full(s, n, page);
+		remove_full(s, n, slab);
 	}
 
 	spin_unlock_irqrestore(&n->list_lock, flags);
 	stat(s, FREE_SLAB);
-	discard_slab(s, page);
+	discard_slab(s, slab);
 }
 
 /*
@@ -3430,11 +3426,11 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
  * with all sorts of special processing.
  *
  * Bulk free of a freelist with several objects (all pointing to the
- * same page) possible by specifying head and tail ptr, plus objects
+ * same slab) possible by specifying head and tail ptr, plus objects
  * count (cnt). Bulk free indicated by tail pointer being set.
  */
 static __always_inline void do_slab_free(struct kmem_cache *s,
-				struct page *page, void *head, void *tail,
+				struct slab *slab, void *head, void *tail,
 				int cnt, unsigned long addr)
 {
 	void *tail_obj = tail ? : head;
@@ -3457,7 +3453,7 @@ static __always_inline void do_slab_free(struct kmem_cache *s,
 	/* Same with comment on barrier() in slab_alloc_node() */
 	barrier();
 
-	if (likely(page == c->page)) {
+	if (likely(slab == c->slab)) {
 #ifndef CONFIG_PREEMPT_RT
 		void **freelist = READ_ONCE(c->freelist);
 
@@ -3483,7 +3479,7 @@ static __always_inline void do_slab_free(struct kmem_cache *s,
 
 		local_lock(&s->cpu_slab->lock);
 		c = this_cpu_ptr(s->cpu_slab);
-		if (unlikely(page != c->page)) {
+		if (unlikely(slab != c->slab)) {
 			local_unlock(&s->cpu_slab->lock);
 			goto redo;
 		}
@@ -3498,11 +3494,11 @@ static __always_inline void do_slab_free(struct kmem_cache *s,
 #endif
 		stat(s, FREE_FASTPATH);
 	} else
-		__slab_free(s, page, head, tail_obj, cnt, addr);
+		__slab_free(s, slab, head, tail_obj, cnt, addr);
 
 }
 
-static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
+static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
 				      void *head, void *tail, int cnt,
 				      unsigned long addr)
 {
@@ -3511,13 +3507,13 @@ static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
 	 * to remove objects, whose reuse must be delayed.
 	 */
 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
-		do_slab_free(s, page, head, tail, cnt, addr);
+		do_slab_free(s, slab, head, tail, cnt, addr);
 }
 
 #ifdef CONFIG_KASAN_GENERIC
 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
 {
-	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
+	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
 }
 #endif
 
@@ -3527,35 +3523,36 @@ void kmem_cache_free(struct kmem_cache *s, void *x)
 	if (!s)
 		return;
 	trace_kmem_cache_free(_RET_IP_, x, s->name);
-	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
+	slab_free(s, virt_to_slab(x), x, NULL, 1, _RET_IP_);
 }
 EXPORT_SYMBOL(kmem_cache_free);
 
 struct detached_freelist {
-	struct page *page;
+	struct slab *slab;
 	void *tail;
 	void *freelist;
 	int cnt;
 	struct kmem_cache *s;
 };
 
-static inline void free_nonslab_page(struct page *page, void *object)
+static inline void free_large_kmalloc(struct folio *folio, void *object)
 {
-	unsigned int order = compound_order(page);
+	unsigned int order = folio_order(folio);
 
-	if (WARN_ON_ONCE(!PageCompound(page)))
+	if (WARN_ON_ONCE(order == 0))
 		pr_warn_once("object pointer: 0x%p\n", object);
 
 	kfree_hook(object);
-	mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
-	__free_pages(page, order);
+	mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
+			      -(PAGE_SIZE << order));
+	__free_pages(folio_page(folio, 0), order);
 }
 
 /*
  * This function progressively scans the array with free objects (with
  * a limited look ahead) and extract objects belonging to the same
- * page.  It builds a detached freelist directly within the given
- * page/objects.  This can happen without any need for
+ * slab.  It builds a detached freelist directly within the given
+ * slab/objects.  This can happen without any need for
  * synchronization, because the objects are owned by running process.
  * The freelist is build up as a single linked list in the objects.
  * The idea is, that this detached freelist can then be bulk
@@ -3570,10 +3567,11 @@ int build_detached_freelist(struct kmem_cache *s, size_t size,
 	size_t first_skipped_index = 0;
 	int lookahead = 3;
 	void *object;
-	struct page *page;
+	struct folio *folio;
+	struct slab *slab;
 
 	/* Always re-init detached_freelist */
-	df->page = NULL;
+	df->slab = NULL;
 
 	do {
 		object = p[--size];
@@ -3583,17 +3581,19 @@ int build_detached_freelist(struct kmem_cache *s, size_t size,
 	if (!object)
 		return 0;
 
-	page = virt_to_head_page(object);
+	folio = virt_to_folio(object);
 	if (!s) {
 		/* Handle kalloc'ed objects */
-		if (unlikely(!PageSlab(page))) {
-			free_nonslab_page(page, object);
+		if (unlikely(!folio_test_slab(folio))) {
+			free_large_kmalloc(folio, object);
 			p[size] = NULL; /* mark object processed */
 			return size;
 		}
 		/* Derive kmem_cache from object */
-		df->s = page->slab_cache;
+		slab = folio_slab(folio);
+		df->s = slab->slab_cache;
 	} else {
+		slab = folio_slab(folio);
 		df->s = cache_from_obj(s, object); /* Support for memcg */
 	}
 
@@ -3605,7 +3605,7 @@ int build_detached_freelist(struct kmem_cache *s, size_t size,
 	}
 
 	/* Start new detached freelist */
-	df->page = page;
+	df->slab = slab;
 	set_freepointer(df->s, object, NULL);
 	df->tail = object;
 	df->freelist = object;
@@ -3617,8 +3617,8 @@ int build_detached_freelist(struct kmem_cache *s, size_t size,
 		if (!object)
 			continue; /* Skip processed objects */
 
-		/* df->page is always set at this point */
-		if (df->page == virt_to_head_page(object)) {
+		/* df->slab is always set at this point */
+		if (df->slab == virt_to_slab(object)) {
 			/* Opportunity build freelist */
 			set_freepointer(df->s, object, df->freelist);
 			df->freelist = object;
@@ -3650,10 +3650,10 @@ void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
 		struct detached_freelist df;
 
 		size = build_detached_freelist(s, size, p, &df);
-		if (!df.page)
+		if (!df.slab)
 			continue;
 
-		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
+		slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, _RET_IP_);
 	} while (likely(size));
 }
 EXPORT_SYMBOL(kmem_cache_free_bulk);
@@ -3787,7 +3787,7 @@ static unsigned int slub_min_objects;
  * requested a higher minimum order then we start with that one instead of
  * the smallest order which will fit the object.
  */
-static inline unsigned int slab_order(unsigned int size,
+static inline unsigned int calc_slab_order(unsigned int size,
 		unsigned int min_objects, unsigned int max_order,
 		unsigned int fract_leftover)
 {
@@ -3851,7 +3851,7 @@ static inline int calculate_order(unsigned int size)
 
 		fraction = 16;
 		while (fraction >= 4) {
-			order = slab_order(size, min_objects,
+			order = calc_slab_order(size, min_objects,
 					slub_max_order, fraction);
 			if (order <= slub_max_order)
 				return order;
@@ -3864,14 +3864,14 @@ static inline int calculate_order(unsigned int size)
 	 * We were unable to place multiple objects in a slab. Now
 	 * lets see if we can place a single object there.
 	 */
-	order = slab_order(size, 1, slub_max_order, 1);
+	order = calc_slab_order(size, 1, slub_max_order, 1);
 	if (order <= slub_max_order)
 		return order;
 
 	/*
 	 * Doh this slab cannot be placed using slub_max_order.
 	 */
-	order = slab_order(size, 1, MAX_ORDER, 1);
+	order = calc_slab_order(size, 1, MAX_ORDER, 1);
 	if (order < MAX_ORDER)
 		return order;
 	return -ENOSYS;
@@ -3923,38 +3923,38 @@ static struct kmem_cache *kmem_cache_node;
  */
 static void early_kmem_cache_node_alloc(int node)
 {
-	struct page *page;
+	struct slab *slab;
 	struct kmem_cache_node *n;
 
 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
 
-	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
+	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
 
-	BUG_ON(!page);
-	if (page_to_nid(page) != node) {
+	BUG_ON(!slab);
+	if (slab_nid(slab) != node) {
 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
 	}
 
-	n = page->freelist;
+	n = slab->freelist;
 	BUG_ON(!n);
 #ifdef CONFIG_SLUB_DEBUG
 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
 	init_tracking(kmem_cache_node, n);
 #endif
 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
-	page->freelist = get_freepointer(kmem_cache_node, n);
-	page->inuse = 1;
-	page->frozen = 0;
+	slab->freelist = get_freepointer(kmem_cache_node, n);
+	slab->inuse = 1;
+	slab->frozen = 0;
 	kmem_cache_node->node[node] = n;
 	init_kmem_cache_node(n);
-	inc_slabs_node(kmem_cache_node, node, page->objects);
+	inc_slabs_node(kmem_cache_node, node, slab->objects);
 
 	/*
 	 * No locks need to be taken here as it has just been
 	 * initialized and there is no concurrent access.
 	 */
-	__add_partial(n, page, DEACTIVATE_TO_HEAD);
+	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
 }
 
 static void free_kmem_cache_nodes(struct kmem_cache *s)
@@ -4212,7 +4212,7 @@ static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
 #endif
 
 	/*
-	 * The larger the object size is, the more pages we want on the partial
+	 * The larger the object size is, the more slabs we want on the partial
 	 * list to avoid pounding the page allocator excessively.
 	 */
 	set_min_partial(s, ilog2(s->size) / 2);
@@ -4240,20 +4240,20 @@ static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
 	return -EINVAL;
 }
 
-static void list_slab_objects(struct kmem_cache *s, struct page *page,
+static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
 			      const char *text)
 {
 #ifdef CONFIG_SLUB_DEBUG
-	void *addr = page_address(page);
+	void *addr = slab_address(slab);
 	unsigned long flags;
 	unsigned long *map;
 	void *p;
 
-	slab_err(s, page, text, s->name);
-	slab_lock(page, &flags);
+	slab_err(s, slab, text, s->name);
+	slab_lock(slab, &flags);
 
-	map = get_map(s, page);
-	for_each_object(p, s, addr, page->objects) {
+	map = get_map(s, slab);
+	for_each_object(p, s, addr, slab->objects) {
 
 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
@@ -4261,7 +4261,7 @@ static void list_slab_objects(struct kmem_cache *s, struct page *page,
 		}
 	}
 	put_map(map);
-	slab_unlock(page, &flags);
+	slab_unlock(slab, &flags);
 #endif
 }
 
@@ -4273,23 +4273,23 @@ static void list_slab_objects(struct kmem_cache *s, struct page *page,
 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
 {
 	LIST_HEAD(discard);
-	struct page *page, *h;
+	struct slab *slab, *h;
 
 	BUG_ON(irqs_disabled());
 	spin_lock_irq(&n->list_lock);
-	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
-		if (!page->inuse) {
-			remove_partial(n, page);
-			list_add(&page->slab_list, &discard);
+	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
+		if (!slab->inuse) {
+			remove_partial(n, slab);
+			list_add(&slab->slab_list, &discard);
 		} else {
-			list_slab_objects(s, page,
+			list_slab_objects(s, slab,
 			  "Objects remaining in %s on __kmem_cache_shutdown()");
 		}
 	}
 	spin_unlock_irq(&n->list_lock);
 
-	list_for_each_entry_safe(page, h, &discard, slab_list)
-		discard_slab(s, page);
+	list_for_each_entry_safe(slab, h, &discard, slab_list)
+		discard_slab(s, slab);
 }
 
 bool __kmem_cache_empty(struct kmem_cache *s)
@@ -4322,31 +4322,32 @@ int __kmem_cache_shutdown(struct kmem_cache *s)
 }
 
 #ifdef CONFIG_PRINTK
-void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
+void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 {
 	void *base;
 	int __maybe_unused i;
 	unsigned int objnr;
 	void *objp;
 	void *objp0;
-	struct kmem_cache *s = page->slab_cache;
+	struct kmem_cache *s = slab->slab_cache;
 	struct track __maybe_unused *trackp;
 
 	kpp->kp_ptr = object;
-	kpp->kp_page = page;
+	kpp->kp_slab = slab;
 	kpp->kp_slab_cache = s;
-	base = page_address(page);
+	base = slab_address(slab);
 	objp0 = kasan_reset_tag(object);
 #ifdef CONFIG_SLUB_DEBUG
 	objp = restore_red_left(s, objp0);
 #else
 	objp = objp0;
 #endif
-	objnr = obj_to_index(s, page, objp);
+	objnr = obj_to_index(s, slab, objp);
 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
 	objp = base + s->size * objnr;
 	kpp->kp_objp = objp;
-	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
+	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
+			 || (objp - base) % s->size) ||
 	    !(s->flags & SLAB_STORE_USER))
 		return;
 #ifdef CONFIG_SLUB_DEBUG
@@ -4484,8 +4485,8 @@ EXPORT_SYMBOL(__kmalloc_node);
  * Returns NULL if check passes, otherwise const char * to name of cache
  * to indicate an error.
  */
-void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
-			 bool to_user)
+void __check_heap_object(const void *ptr, unsigned long n,
+			 const struct slab *slab, bool to_user)
 {
 	struct kmem_cache *s;
 	unsigned int offset;
@@ -4494,10 +4495,10 @@ void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
 	ptr = kasan_reset_tag(ptr);
 
 	/* Find object and usable object size. */
-	s = page->slab_cache;
+	s = slab->slab_cache;
 
 	/* Reject impossible pointers. */
-	if (ptr < page_address(page))
+	if (ptr < slab_address(slab))
 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
 			       to_user, 0, n);
 
@@ -4505,7 +4506,7 @@ void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
 	if (is_kfence)
 		offset = ptr - kfence_object_start(ptr);
 	else
-		offset = (ptr - page_address(page)) % s->size;
+		offset = (ptr - slab_address(slab)) % s->size;
 
 	/* Adjust for redzone and reject if within the redzone. */
 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
@@ -4527,25 +4528,24 @@ void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
 
 size_t __ksize(const void *object)
 {
-	struct page *page;
+	struct folio *folio;
 
 	if (unlikely(object == ZERO_SIZE_PTR))
 		return 0;
 
-	page = virt_to_head_page(object);
+	folio = virt_to_folio(object);
 
-	if (unlikely(!PageSlab(page))) {
-		WARN_ON(!PageCompound(page));
-		return page_size(page);
-	}
+	if (unlikely(!folio_test_slab(folio)))
+		return folio_size(folio);
 
-	return slab_ksize(page->slab_cache);
+	return slab_ksize(folio_slab(folio)->slab_cache);
 }
 EXPORT_SYMBOL(__ksize);
 
 void kfree(const void *x)
 {
-	struct page *page;
+	struct folio *folio;
+	struct slab *slab;
 	void *object = (void *)x;
 
 	trace_kfree(_RET_IP_, x);
@@ -4553,12 +4553,13 @@ void kfree(const void *x)
 	if (unlikely(ZERO_OR_NULL_PTR(x)))
 		return;
 
-	page = virt_to_head_page(x);
-	if (unlikely(!PageSlab(page))) {
-		free_nonslab_page(page, object);
+	folio = virt_to_folio(x);
+	if (unlikely(!folio_test_slab(folio))) {
+		free_large_kmalloc(folio, object);
 		return;
 	}
-	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
+	slab = folio_slab(folio);
+	slab_free(slab->slab_cache, slab, object, NULL, 1, _RET_IP_);
 }
 EXPORT_SYMBOL(kfree);
 
@@ -4578,8 +4579,8 @@ static int __kmem_cache_do_shrink(struct kmem_cache *s)
 	int node;
 	int i;
 	struct kmem_cache_node *n;
-	struct page *page;
-	struct page *t;
+	struct slab *slab;
+	struct slab *t;
 	struct list_head discard;
 	struct list_head promote[SHRINK_PROMOTE_MAX];
 	unsigned long flags;
@@ -4596,22 +4597,22 @@ static int __kmem_cache_do_shrink(struct kmem_cache *s)
 		 * Build lists of slabs to discard or promote.
 		 *
 		 * Note that concurrent frees may occur while we hold the
-		 * list_lock. page->inuse here is the upper limit.
+		 * list_lock. slab->inuse here is the upper limit.
 		 */
-		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
-			int free = page->objects - page->inuse;
+		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
+			int free = slab->objects - slab->inuse;
 
-			/* Do not reread page->inuse */
+			/* Do not reread slab->inuse */
 			barrier();
 
 			/* We do not keep full slabs on the list */
 			BUG_ON(free <= 0);
 
-			if (free == page->objects) {
-				list_move(&page->slab_list, &discard);
+			if (free == slab->objects) {
+				list_move(&slab->slab_list, &discard);
 				n->nr_partial--;
 			} else if (free <= SHRINK_PROMOTE_MAX)
-				list_move(&page->slab_list, promote + free - 1);
+				list_move(&slab->slab_list, promote + free - 1);
 		}
 
 		/*
@@ -4624,8 +4625,8 @@ static int __kmem_cache_do_shrink(struct kmem_cache *s)
 		spin_unlock_irqrestore(&n->list_lock, flags);
 
 		/* Release empty slabs */
-		list_for_each_entry_safe(page, t, &discard, slab_list)
-			discard_slab(s, page);
+		list_for_each_entry_safe(slab, t, &discard, slab_list)
+			discard_slab(s, slab);
 
 		if (slabs_node(s, node))
 			ret = 1;
@@ -4786,7 +4787,7 @@ static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
 	 */
 	__flush_cpu_slab(s, smp_processor_id());
 	for_each_kmem_cache_node(s, node, n) {
-		struct page *p;
+		struct slab *p;
 
 		list_for_each_entry(p, &n->partial, slab_list)
 			p->slab_cache = s;
@@ -4964,54 +4965,54 @@ EXPORT_SYMBOL(__kmalloc_node_track_caller);
 #endif
 
 #ifdef CONFIG_SYSFS
-static int count_inuse(struct page *page)
+static int count_inuse(struct slab *slab)
 {
-	return page->inuse;
+	return slab->inuse;
 }
 
-static int count_total(struct page *page)
+static int count_total(struct slab *slab)
 {
-	return page->objects;
+	return slab->objects;
 }
 #endif
 
 #ifdef CONFIG_SLUB_DEBUG
-static void validate_slab(struct kmem_cache *s, struct page *page,
+static void validate_slab(struct kmem_cache *s, struct slab *slab,
 			  unsigned long *obj_map)
 {
 	void *p;
-	void *addr = page_address(page);
+	void *addr = slab_address(slab);
 	unsigned long flags;
 
-	slab_lock(page, &flags);
+	slab_lock(slab, &flags);
 
-	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
+	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
 		goto unlock;
 
 	/* Now we know that a valid freelist exists */
-	__fill_map(obj_map, s, page);
-	for_each_object(p, s, addr, page->objects) {
+	__fill_map(obj_map, s, slab);
+	for_each_object(p, s, addr, slab->objects) {
 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
 
-		if (!check_object(s, page, p, val))
+		if (!check_object(s, slab, p, val))
 			break;
 	}
 unlock:
-	slab_unlock(page, &flags);
+	slab_unlock(slab, &flags);
 }
 
 static int validate_slab_node(struct kmem_cache *s,
 		struct kmem_cache_node *n, unsigned long *obj_map)
 {
 	unsigned long count = 0;
-	struct page *page;
+	struct slab *slab;
 	unsigned long flags;
 
 	spin_lock_irqsave(&n->list_lock, flags);
 
-	list_for_each_entry(page, &n->partial, slab_list) {
-		validate_slab(s, page, obj_map);
+	list_for_each_entry(slab, &n->partial, slab_list) {
+		validate_slab(s, slab, obj_map);
 		count++;
 	}
 	if (count != n->nr_partial) {
@@ -5023,8 +5024,8 @@ static int validate_slab_node(struct kmem_cache *s,
 	if (!(s->flags & SLAB_STORE_USER))
 		goto out;
 
-	list_for_each_entry(page, &n->full, slab_list) {
-		validate_slab(s, page, obj_map);
+	list_for_each_entry(slab, &n->full, slab_list) {
+		validate_slab(s, slab, obj_map);
 		count++;
 	}
 	if (count != atomic_long_read(&n->nr_slabs)) {
@@ -5190,15 +5191,15 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
 }
 
 static void process_slab(struct loc_track *t, struct kmem_cache *s,
-		struct page *page, enum track_item alloc,
+		struct slab *slab, enum track_item alloc,
 		unsigned long *obj_map)
 {
-	void *addr = page_address(page);
+	void *addr = slab_address(slab);
 	void *p;
 
-	__fill_map(obj_map, s, page);
+	__fill_map(obj_map, s, slab);
 
-	for_each_object(p, s, addr, page->objects)
+	for_each_object(p, s, addr, slab->objects)
 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
 			add_location(t, s, get_track(s, p, alloc));
 }
@@ -5240,35 +5241,37 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
 							       cpu);
 			int node;
-			struct page *page;
+			struct slab *slab;
 
-			page = READ_ONCE(c->page);
-			if (!page)
+			slab = READ_ONCE(c->slab);
+			if (!slab)
 				continue;
 
-			node = page_to_nid(page);
+			node = slab_nid(slab);
 			if (flags & SO_TOTAL)
-				x = page->objects;
+				x = slab->objects;
 			else if (flags & SO_OBJECTS)
-				x = page->inuse;
+				x = slab->inuse;
 			else
 				x = 1;
 
 			total += x;
 			nodes[node] += x;
 
-			page = slub_percpu_partial_read_once(c);
-			if (page) {
-				node = page_to_nid(page);
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+			slab = slub_percpu_partial_read_once(c);
+			if (slab) {
+				node = slab_nid(slab);
 				if (flags & SO_TOTAL)
 					WARN_ON_ONCE(1);
 				else if (flags & SO_OBJECTS)
 					WARN_ON_ONCE(1);
 				else
-					x = page->pages;
+					x = slab->slabs;
 				total += x;
 				nodes[node] += x;
 			}
+#endif
 		}
 	}
 
@@ -5467,33 +5470,35 @@ SLAB_ATTR_RO(objects_partial);
 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
 {
 	int objects = 0;
-	int pages = 0;
-	int cpu;
+	int slabs = 0;
+	int cpu __maybe_unused;
 	int len = 0;
 
+#ifdef CONFIG_SLUB_CPU_PARTIAL
 	for_each_online_cpu(cpu) {
-		struct page *page;
+		struct slab *slab;
 
-		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
+		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
 
-		if (page)
-			pages += page->pages;
+		if (slab)
+			slabs += slab->slabs;
 	}
+#endif
 
-	/* Approximate half-full pages , see slub_set_cpu_partial() */
-	objects = (pages * oo_objects(s->oo)) / 2;
-	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
+	/* Approximate half-full slabs, see slub_set_cpu_partial() */
+	objects = (slabs * oo_objects(s->oo)) / 2;
+	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
 
-#ifdef CONFIG_SMP
+#if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
 	for_each_online_cpu(cpu) {
-		struct page *page;
+		struct slab *slab;
 
-		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
-		if (page) {
-			pages = READ_ONCE(page->pages);
-			objects = (pages * oo_objects(s->oo)) / 2;
+		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
+		if (slab) {
+			slabs = READ_ONCE(slab->slabs);
+			objects = (slabs * oo_objects(s->oo)) / 2;
 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
-					     cpu, objects, pages);
+					     cpu, objects, slabs);
 		}
 	}
 #endif
@@ -6161,16 +6166,16 @@ static int slab_debug_trace_open(struct inode *inode, struct file *filep)
 
 	for_each_kmem_cache_node(s, node, n) {
 		unsigned long flags;
-		struct page *page;
+		struct slab *slab;
 
 		if (!atomic_long_read(&n->nr_slabs))
 			continue;
 
 		spin_lock_irqsave(&n->list_lock, flags);
-		list_for_each_entry(page, &n->partial, slab_list)
-			process_slab(t, s, page, alloc, obj_map);
-		list_for_each_entry(page, &n->full, slab_list)
-			process_slab(t, s, page, alloc, obj_map);
+		list_for_each_entry(slab, &n->partial, slab_list)
+			process_slab(t, s, slab, alloc, obj_map);
+		list_for_each_entry(slab, &n->full, slab_list)
+			process_slab(t, s, slab, alloc, obj_map);
 		spin_unlock_irqrestore(&n->list_lock, flags);
 	}
 
diff --git a/mm/sparse.c b/mm/sparse.c
index e5c84b0cf0c9384733477bc3707f61852e07cdb6..d21c6e5910d07b41cc49f1dad131a9e95c91800b 100644
--- a/mm/sparse.c
+++ b/mm/sparse.c
@@ -722,7 +722,7 @@ static void free_map_bootmem(struct page *memmap)
 		>> PAGE_SHIFT;
 
 	for (i = 0; i < nr_pages; i++, page++) {
-		magic = (unsigned long) page->freelist;
+		magic = page->index;
 
 		BUG_ON(magic == NODE_INFO);
 
diff --git a/mm/usercopy.c b/mm/usercopy.c
index b3de3c4eefba750836d2368a89ef42ed47995884..d0d268135d96d6494949bb5eec702f7365ddc86a 100644
--- a/mm/usercopy.c
+++ b/mm/usercopy.c
@@ -20,6 +20,7 @@
 #include <linux/atomic.h>
 #include <linux/jump_label.h>
 #include <asm/sections.h>
+#include "slab.h"
 
 /*
  * Checks if a given pointer and length is contained by the current
@@ -223,7 +224,7 @@ static inline void check_page_span(const void *ptr, unsigned long n,
 static inline void check_heap_object(const void *ptr, unsigned long n,
 				     bool to_user)
 {
-	struct page *page;
+	struct folio *folio;
 
 	if (!virt_addr_valid(ptr))
 		return;
@@ -231,16 +232,16 @@ static inline void check_heap_object(const void *ptr, unsigned long n,
 	/*
 	 * When CONFIG_HIGHMEM=y, kmap_to_page() will give either the
 	 * highmem page or fallback to virt_to_page(). The following
-	 * is effectively a highmem-aware virt_to_head_page().
+	 * is effectively a highmem-aware virt_to_slab().
 	 */
-	page = compound_head(kmap_to_page((void *)ptr));
+	folio = page_folio(kmap_to_page((void *)ptr));
 
-	if (PageSlab(page)) {
+	if (folio_test_slab(folio)) {
 		/* Check slab allocator for flags and size. */
-		__check_heap_object(ptr, n, page, to_user);
+		__check_heap_object(ptr, n, folio_slab(folio), to_user);
 	} else {
 		/* Verify object does not incorrectly span multiple pages. */
-		check_page_span(ptr, n, page, to_user);
+		check_page_span(ptr, n, folio_page(folio, 0), to_user);
 	}
 }
 
diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c
index b897ce3b399a1019a7f62d00fff434c685a2794d..0d3b65939016c38b7d77fd79b2d8180a65d33a9a 100644
--- a/mm/zsmalloc.c
+++ b/mm/zsmalloc.c
@@ -17,10 +17,10 @@
  *
  * Usage of struct page fields:
  *	page->private: points to zspage
- *	page->freelist(index): links together all component pages of a zspage
+ *	page->index: links together all component pages of a zspage
  *		For the huge page, this is always 0, so we use this field
  *		to store handle.
- *	page->units: first object offset in a subpage of zspage
+ *	page->page_type: first object offset in a subpage of zspage
  *
  * Usage of struct page flags:
  *	PG_private: identifies the first component page
@@ -489,12 +489,12 @@ static inline struct page *get_first_page(struct zspage *zspage)
 
 static inline int get_first_obj_offset(struct page *page)
 {
-	return page->units;
+	return page->page_type;
 }
 
 static inline void set_first_obj_offset(struct page *page, int offset)
 {
-	page->units = offset;
+	page->page_type = offset;
 }
 
 static inline unsigned int get_freeobj(struct zspage *zspage)
@@ -827,7 +827,7 @@ static struct page *get_next_page(struct page *page)
 	if (unlikely(PageHugeObject(page)))
 		return NULL;
 
-	return page->freelist;
+	return (struct page *)page->index;
 }
 
 /**
@@ -901,7 +901,7 @@ static void reset_page(struct page *page)
 	set_page_private(page, 0);
 	page_mapcount_reset(page);
 	ClearPageHugeObject(page);
-	page->freelist = NULL;
+	page->index = 0;
 }
 
 static int trylock_zspage(struct zspage *zspage)
@@ -1027,7 +1027,7 @@ static void create_page_chain(struct size_class *class, struct zspage *zspage,
 
 	/*
 	 * Allocate individual pages and link them together as:
-	 * 1. all pages are linked together using page->freelist
+	 * 1. all pages are linked together using page->index
 	 * 2. each sub-page point to zspage using page->private
 	 *
 	 * we set PG_private to identify the first page (i.e. no other sub-page
@@ -1036,7 +1036,7 @@ static void create_page_chain(struct size_class *class, struct zspage *zspage,
 	for (i = 0; i < nr_pages; i++) {
 		page = pages[i];
 		set_page_private(page, (unsigned long)zspage);
-		page->freelist = NULL;
+		page->index = 0;
 		if (i == 0) {
 			zspage->first_page = page;
 			SetPagePrivate(page);
@@ -1044,7 +1044,7 @@ static void create_page_chain(struct size_class *class, struct zspage *zspage,
 					class->pages_per_zspage == 1))
 				SetPageHugeObject(page);
 		} else {
-			prev_page->freelist = page;
+			prev_page->index = (unsigned long)page;
 		}
 		prev_page = page;
 	}