Skip to content
Snippets Groups Projects
intel_scu_ipc.c 20.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
     *
     * (C) Copyright 2008-2010 Intel Corporation
     * Author: Sreedhara DS (sreedhara.ds@intel.com)
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License
     * as published by the Free Software Foundation; version 2
     * of the License.
     *
     * SCU runing in ARC processor communicates with other entity running in IA
     * core through IPC mechanism which in turn messaging between IA core ad SCU.
     * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
     * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
     * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
     * along with other APIs.
     */
    #include <linux/delay.h>
    #include <linux/errno.h>
    #include <linux/init.h>
    #include <linux/sysdev.h>
    #include <linux/pm.h>
    #include <linux/pci.h>
    #include <linux/interrupt.h>
    
    #include <linux/sfi.h>
    
    #include <asm/mrst.h>
    
    #include <asm/intel_scu_ipc.h>
    
    #include <asm/mrst.h>
    
    
    /* IPC defines the following message types */
    #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
    #define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
    #define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
    #define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
    #define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */
    
    /* Command id associated with message IPCMSG_PCNTRL */
    #define IPC_CMD_PCNTRL_W      0 /* Register write */
    #define IPC_CMD_PCNTRL_R      1 /* Register read */
    #define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
    
    /*
     * IPC register summary
     *
     * IPC register blocks are memory mapped at fixed address of 0xFF11C000
     * To read or write information to the SCU, driver writes to IPC-1 memory
     * mapped registers (base address 0xFF11C000). The following is the IPC
     * mechanism
     *
     * 1. IA core cDMI interface claims this transaction and converts it to a
     *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
     *
     * 2. South Complex cDMI block receives this message and writes it to
     *    the IPC-1 register block, causing an interrupt to the SCU
     *
     * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
     *    message handler is called within firmware.
     */
    
    #define IPC_BASE_ADDR     0xFF11C000	/* IPC1 base register address */
    #define IPC_MAX_ADDR      0x100		/* Maximum IPC regisers */
    
    #define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
    #define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
    
    #define IPC_I2C_BASE      0xFF12B000	/* I2C control register base address */
    #define IPC_I2C_MAX_ADDR  0x10		/* Maximum I2C regisers */
    
    static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
    static void ipc_remove(struct pci_dev *pdev);
    
    struct intel_scu_ipc_dev {
    	struct pci_dev *pdev;
    	void __iomem *ipc_base;
    	void __iomem *i2c_base;
    };
    
    static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */
    
    
    static int platform;		/* Platform type */
    
    
    /*
     * IPC Read Buffer (Read Only):
     * 16 byte buffer for receiving data from SCU, if IPC command
     * processing results in response data
     */
    #define IPC_READ_BUFFER		0x90
    
    #define IPC_I2C_CNTRL_ADDR	0
    #define I2C_DATA_ADDR		0x04
    
    static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
    
    /*
     * Command Register (Write Only):
     * A write to this register results in an interrupt to the SCU core processor
     * Format:
     * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
     */
    static inline void ipc_command(u32 cmd) /* Send ipc command */
    {
    	writel(cmd, ipcdev.ipc_base);
    }
    
    /*
     * IPC Write Buffer (Write Only):
     * 16-byte buffer for sending data associated with IPC command to
     * SCU. Size of the data is specified in the IPC_COMMAND_REG register
     */
    static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
    {
    	writel(data, ipcdev.ipc_base + 0x80 + offset);
    }
    
    /*
     * Status Register (Read Only):
     * Driver will read this register to get the ready/busy status of the IPC
     * block and error status of the IPC command that was just processed by SCU
     * Format:
     * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
     */
    
    static inline u8 ipc_read_status(void)
    {
    	return __raw_readl(ipcdev.ipc_base + 0x04);
    }
    
    static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
    {
    	return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
    }
    
    
    static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
    
    {
    	return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
    }
    
    static inline int busy_loop(void) /* Wait till scu status is busy */
    {
    	u32 status = 0;
    	u32 loop_count = 0;
    
    	status = ipc_read_status();
    	while (status & 1) {
    		udelay(1); /* scu processing time is in few u secods */
    		status = ipc_read_status();
    		loop_count++;
    		/* break if scu doesn't reset busy bit after huge retry */
    		if (loop_count > 100000) {
    			dev_err(&ipcdev.pdev->dev, "IPC timed out");
    			return -ETIMEDOUT;
    		}
    	}
    
    	if ((status >> 1) & 1)
    		return -EIO;
    
    	return 0;
    
    }
    
    /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
    static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
    {
    
    	int err;
    
    	u8 cbuf[IPC_WWBUF_SIZE] = { };
    
    	u32 *wbuf = (u32 *)&cbuf;
    
    	mutex_lock(&ipclock);
    
    	if (ipcdev.pdev == NULL) {
    		mutex_unlock(&ipclock);
    		return -ENODEV;
    	}
    
    
    	if (platform != MRST_CPU_CHIP_PENWELL) {
    
    		bytes = 0;
    
    		d = 0;
    		for (i = 0; i < count; i++) {
    
    			cbuf[bytes++] = addr[i];
    			cbuf[bytes++] = addr[i] >> 8;
    
    			if (id != IPC_CMD_PCNTRL_R)
    
    				cbuf[bytes++] = data[d++];
    
    			if (id == IPC_CMD_PCNTRL_M)
    
    				cbuf[bytes++] = data[d++];
    
    		for (i = 0; i < bytes; i += 4)
    
    			ipc_data_writel(wbuf[i/4], i);
    		ipc_command(bytes << 16 |  id << 12 | 0 << 8 | op);
    
    		for (nc = 0; nc < count; nc++, offset += 2) {
    			cbuf[offset] = addr[nc];
    			cbuf[offset + 1] = addr[nc] >> 8;
    
    		if (id == IPC_CMD_PCNTRL_R) {
    			for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
    				ipc_data_writel(wbuf[nc], offset);
    			ipc_command((count*2) << 16 |  id << 12 | 0 << 8 | op);
    		} else if (id == IPC_CMD_PCNTRL_W) {
    			for (nc = 0; nc < count; nc++, offset += 1)
    				cbuf[offset] = data[nc];
    			for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
    				ipc_data_writel(wbuf[nc], offset);
    			ipc_command((count*3) << 16 |  id << 12 | 0 << 8 | op);
    		} else if (id == IPC_CMD_PCNTRL_M) {
    			cbuf[offset] = data[0];
    			cbuf[offset + 1] = data[1];
    			ipc_data_writel(wbuf[0], 0); /* Write wbuff */
    			ipc_command(4 << 16 |  id << 12 | 0 << 8 | op);
    		}
    	}
    
    
    	err = busy_loop();
    	if (id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
    		/* Workaround: values are read as 0 without memcpy_fromio */
    
    		memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
    
    		if (platform != MRST_CPU_CHIP_PENWELL) {
    
    			for (nc = 0, offset = 2; nc < count; nc++, offset += 3)
    				data[nc] = ipc_data_readb(offset);
    		} else {
    			for (nc = 0; nc < count; nc++)
    				data[nc] = ipc_data_readb(nc);
    		}
    	}
    	mutex_unlock(&ipclock);
    	return err;
    }
    
    /**
     *	intel_scu_ipc_ioread8		-	read a word via the SCU
     *	@addr: register on SCU
     *	@data: return pointer for read byte
     *
     *	Read a single register. Returns 0 on success or an error code. All
     *	locking between SCU accesses is handled for the caller.
     *
     *	This function may sleep.
     */
    int intel_scu_ipc_ioread8(u16 addr, u8 *data)
    {
    	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
    }
    EXPORT_SYMBOL(intel_scu_ipc_ioread8);
    
    /**
     *	intel_scu_ipc_ioread16		-	read a word via the SCU
     *	@addr: register on SCU
     *	@data: return pointer for read word
     *
     *	Read a register pair. Returns 0 on success or an error code. All
     *	locking between SCU accesses is handled for the caller.
     *
     *	This function may sleep.
     */
    int intel_scu_ipc_ioread16(u16 addr, u16 *data)
    {
    	u16 x[2] = {addr, addr + 1 };
    	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
    }
    EXPORT_SYMBOL(intel_scu_ipc_ioread16);
    
    /**
     *	intel_scu_ipc_ioread32		-	read a dword via the SCU
     *	@addr: register on SCU
     *	@data: return pointer for read dword
     *
     *	Read four registers. Returns 0 on success or an error code. All
     *	locking between SCU accesses is handled for the caller.
     *
     *	This function may sleep.
     */
    int intel_scu_ipc_ioread32(u16 addr, u32 *data)
    {
    	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
    	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
    }
    EXPORT_SYMBOL(intel_scu_ipc_ioread32);
    
    /**
     *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
     *	@addr: register on SCU
     *	@data: byte to write
     *
     *	Write a single register. Returns 0 on success or an error code. All
     *	locking between SCU accesses is handled for the caller.
     *
     *	This function may sleep.
     */
    int intel_scu_ipc_iowrite8(u16 addr, u8 data)
    {
    	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
    }
    EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
    
    /**
     *	intel_scu_ipc_iowrite16		-	write a word via the SCU
     *	@addr: register on SCU
     *	@data: word to write
     *
     *	Write two registers. Returns 0 on success or an error code. All
     *	locking between SCU accesses is handled for the caller.
     *
     *	This function may sleep.
     */
    int intel_scu_ipc_iowrite16(u16 addr, u16 data)
    {
    	u16 x[2] = {addr, addr + 1 };
    	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
    }
    EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
    
    /**
     *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
     *	@addr: register on SCU
     *	@data: dword to write
     *
     *	Write four registers. Returns 0 on success or an error code. All
     *	locking between SCU accesses is handled for the caller.
     *
     *	This function may sleep.
     */
    int intel_scu_ipc_iowrite32(u16 addr, u32 data)
    {
    	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
    	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
    }
    EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
    
    /**
     *	intel_scu_ipc_readvv		-	read a set of registers
     *	@addr: register list
     *	@data: bytes to return
     *	@len: length of array
     *
     *	Read registers. Returns 0 on success or an error code. All
     *	locking between SCU accesses is handled for the caller.
     *
     *	The largest array length permitted by the hardware is 5 items.
     *
     *	This function may sleep.
     */
    int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
    {
    	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
    }
    EXPORT_SYMBOL(intel_scu_ipc_readv);
    
    /**
     *	intel_scu_ipc_writev		-	write a set of registers
     *	@addr: register list
     *	@data: bytes to write
     *	@len: length of array
     *
     *	Write registers. Returns 0 on success or an error code. All
     *	locking between SCU accesses is handled for the caller.
     *
     *	The largest array length permitted by the hardware is 5 items.
     *
     *	This function may sleep.
     *
     */
    int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
    {
    	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
    }
    EXPORT_SYMBOL(intel_scu_ipc_writev);
    
    
    /**
     *	intel_scu_ipc_update_register	-	r/m/w a register
     *	@addr: register address
     *	@bits: bits to update
     *	@mask: mask of bits to update
     *
     *	Read-modify-write power control unit register. The first data argument
     *	must be register value and second is mask value
     *	mask is a bitmap that indicates which bits to update.
     *	0 = masked. Don't modify this bit, 1 = modify this bit.
     *	returns 0 on success or an error code.
     *
     *	This function may sleep. Locking between SCU accesses is handled
     *	for the caller.
     */
    int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
    {
    	u8 data[2] = { bits, mask };
    	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
    }
    EXPORT_SYMBOL(intel_scu_ipc_update_register);
    
    /**
     *	intel_scu_ipc_simple_command	-	send a simple command
     *	@cmd: command
     *	@sub: sub type
     *
     *	Issue a simple command to the SCU. Do not use this interface if
     *	you must then access data as any data values may be overwritten
     *	by another SCU access by the time this function returns.
     *
     *	This function may sleep. Locking for SCU accesses is handled for
     *	the caller.
     */
    int intel_scu_ipc_simple_command(int cmd, int sub)
    {
    
    	int err;
    
    
    	mutex_lock(&ipclock);
    	if (ipcdev.pdev == NULL) {
    		mutex_unlock(&ipclock);
    		return -ENODEV;
    	}
    
    	ipc_command(sub << 12 | cmd);
    
    	err = busy_loop();
    	mutex_unlock(&ipclock);
    	return err;
    }
    EXPORT_SYMBOL(intel_scu_ipc_simple_command);
    
    /**
     *	intel_scu_ipc_command	-	command with data
     *	@cmd: command
     *	@sub: sub type
     *	@in: input data
    
     *	@inlen: input length in dwords
    
     *	@outlein: output length in dwords
    
     *
     *	Issue a command to the SCU which involves data transfers. Do the
     *	data copies under the lock but leave it for the caller to interpret
     */
    
    int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
    							u32 *out, int outlen)
    {
    
    	int i, err;
    
    
    	mutex_lock(&ipclock);
    	if (ipcdev.pdev == NULL) {
    		mutex_unlock(&ipclock);
    		return -ENODEV;
    	}
    
    	for (i = 0; i < inlen; i++)
    		ipc_data_writel(*in++, 4 * i);
    
    
    	ipc_command((inlen << 16) | (sub << 12) | cmd);
    
    	err = busy_loop();
    
    	for (i = 0; i < outlen; i++)
    		*out++ = ipc_data_readl(4 * i);
    
    	mutex_unlock(&ipclock);
    	return err;
    }
    EXPORT_SYMBOL(intel_scu_ipc_command);
    
    /*I2C commands */
    #define IPC_I2C_WRITE 1 /* I2C Write command */
    #define IPC_I2C_READ  2 /* I2C Read command */
    
    /**
     *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
     *	@addr: I2C address + command bits
     *	@data: data to read/write
     *
     *	Perform an an I2C read/write operation via the SCU. All locking is
     *	handled for the caller. This function may sleep.
     *
     *	Returns an error code or 0 on success.
     *
     *	This has to be in the IPC driver for the locking.
     */
    int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
    {
    	u32 cmd = 0;
    
    	mutex_lock(&ipclock);
    
    	if (ipcdev.pdev == NULL) {
    		mutex_unlock(&ipclock);
    		return -ENODEV;
    	}
    
    	cmd = (addr >> 24) & 0xFF;
    	if (cmd == IPC_I2C_READ) {
    		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
    		/* Write not getting updated without delay */
    		mdelay(1);
    		*data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
    	} else if (cmd == IPC_I2C_WRITE) {
    
    		writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR);
    
    		mdelay(1);
    		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
    	} else {
    		dev_err(&ipcdev.pdev->dev,
    			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
    
    		mutex_unlock(&ipclock);
    
    	}
    	mutex_unlock(&ipclock);
    	return 0;
    }
    EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
    
    #define IPC_FW_LOAD_ADDR 0xFFFC0000 /* Storage location for FW image */
    #define IPC_FW_UPDATE_MBOX_ADDR 0xFFFFDFF4 /* Mailbox between ipc and scu */
    #define IPC_MAX_FW_SIZE 262144 /* 256K storage size for loading the FW image */
    #define IPC_FW_MIP_HEADER_SIZE 2048 /* Firmware MIP header size */
    /* IPC inform SCU to get ready for update process */
    #define IPC_CMD_FW_UPDATE_READY  0x10FE
    /* IPC inform SCU to go for update process */
    #define IPC_CMD_FW_UPDATE_GO     0x20FE
    /* Status code for fw update */
    #define IPC_FW_UPDATE_SUCCESS	0x444f4e45 /* Status code 'DONE' */
    #define IPC_FW_UPDATE_BADN	0x4241444E /* Status code 'BADN' */
    #define IPC_FW_TXHIGH		0x54784849 /* Status code 'IPC_FW_TXHIGH' */
    #define IPC_FW_TXLOW		0x54784c4f /* Status code 'IPC_FW_TXLOW' */
    
    struct fw_update_mailbox {
    	u32    status;
    	u32    scu_flag;
    	u32    driver_flag;
    };
    
    
    /**
     *	intel_scu_ipc_fw_update	-	 Firmware update utility
     *	@buffer: firmware buffer
     *	@length: size of firmware buffer
     *
     *	This function provides an interface to load the firmware into
     *	the SCU. Returns 0 on success or -1 on failure
     */
    int intel_scu_ipc_fw_update(u8 *buffer, u32 length)
    {
    	void __iomem *fw_update_base;
    	struct fw_update_mailbox __iomem *mailbox = NULL;
    	int retry_cnt = 0;
    	u32 status;
    
    	mutex_lock(&ipclock);
    	fw_update_base = ioremap_nocache(IPC_FW_LOAD_ADDR, (128*1024));
    	if (fw_update_base == NULL) {
    		mutex_unlock(&ipclock);
    		return -ENOMEM;
    	}
    	mailbox = ioremap_nocache(IPC_FW_UPDATE_MBOX_ADDR,
    					sizeof(struct fw_update_mailbox));
    	if (mailbox == NULL) {
    		iounmap(fw_update_base);
    		mutex_unlock(&ipclock);
    		return -ENOMEM;
    	}
    
    	ipc_command(IPC_CMD_FW_UPDATE_READY);
    
    	/* Intitialize mailbox */
    	writel(0, &mailbox->status);
    	writel(0, &mailbox->scu_flag);
    	writel(0, &mailbox->driver_flag);
    
    	/* Driver copies the 2KB MIP header to SRAM at 0xFFFC0000*/
    	memcpy_toio(fw_update_base, buffer, 0x800);
    
    	/* Driver sends "FW Update" IPC command (CMD_ID 0xFE; MSG_ID 0x02).
    	* Upon receiving this command, SCU will write the 2K MIP header
    	* from 0xFFFC0000 into NAND.
    	* SCU will write a status code into the Mailbox, and then set scu_flag.
    	*/
    
    	ipc_command(IPC_CMD_FW_UPDATE_GO);
    
    	/*Driver stalls until scu_flag is set */
    	while (readl(&mailbox->scu_flag) != 1) {
    		rmb();
    		mdelay(1);
    	}
    
    	/* Driver checks Mailbox status.
    	 * If the status is 'BADN', then abort (bad NAND).
    	 * If the status is 'IPC_FW_TXLOW', then continue.
    	 */
    	while (readl(&mailbox->status) != IPC_FW_TXLOW) {
    		rmb();
    		mdelay(10);
    	}
    	mdelay(10);
    
    update_retry:
    	if (retry_cnt > 5)
    		goto update_end;
    
    	if (readl(&mailbox->status) != IPC_FW_TXLOW)
    		goto update_end;
    	buffer = buffer + 0x800;
    	memcpy_toio(fw_update_base, buffer, 0x20000);
    	writel(1, &mailbox->driver_flag);
    	while (readl(&mailbox->scu_flag) == 1) {
    		rmb();
    		mdelay(1);
    	}
    
    	/* check for 'BADN' */
    	if (readl(&mailbox->status) == IPC_FW_UPDATE_BADN)
    		goto update_end;
    
    	while (readl(&mailbox->status) != IPC_FW_TXHIGH) {
    		rmb();
    		mdelay(10);
    	}
    	mdelay(10);
    
    	if (readl(&mailbox->status) != IPC_FW_TXHIGH)
    		goto update_end;
    
    	buffer = buffer + 0x20000;
    	memcpy_toio(fw_update_base, buffer, 0x20000);
    	writel(0, &mailbox->driver_flag);
    
    	while (mailbox->scu_flag == 0) {
    		rmb();
    		mdelay(1);
    	}
    
    	/* check for 'BADN' */
    	if (readl(&mailbox->status) == IPC_FW_UPDATE_BADN)
    		goto update_end;
    
    	if (readl(&mailbox->status) == IPC_FW_TXLOW) {
    		++retry_cnt;
    		goto update_retry;
    	}
    
    update_end:
    	status = readl(&mailbox->status);
    
    	iounmap(fw_update_base);
    	iounmap(mailbox);
    	mutex_unlock(&ipclock);
    
    	if (status == IPC_FW_UPDATE_SUCCESS)
    		return 0;
    
    }
    EXPORT_SYMBOL(intel_scu_ipc_fw_update);
    
    /*
     * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
     * When ioc bit is set to 1, caller api must wait for interrupt handler called
     * which in turn unlocks the caller api. Currently this is not used
     *
     * This is edge triggered so we need take no action to clear anything
     */
    static irqreturn_t ioc(int irq, void *dev_id)
    {
    	return IRQ_HANDLED;
    }
    
    /**
     *	ipc_probe	-	probe an Intel SCU IPC
     *	@dev: the PCI device matching
     *	@id: entry in the match table
     *
     *	Enable and install an intel SCU IPC. This appears in the PCI space
     *	but uses some hard coded addresses as well.
     */
    static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
    {
    	int err;
    	resource_size_t pci_resource;
    
    	if (ipcdev.pdev)		/* We support only one SCU */
    		return -EBUSY;
    
    	ipcdev.pdev = pci_dev_get(dev);
    
    	err = pci_enable_device(dev);
    	if (err)
    		return err;
    
    	err = pci_request_regions(dev, "intel_scu_ipc");
    	if (err)
    		return err;
    
    	pci_resource = pci_resource_start(dev, 0);
    	if (!pci_resource)
    		return -ENOMEM;
    
    	if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
    		return -EBUSY;
    
    	ipcdev.ipc_base = ioremap_nocache(IPC_BASE_ADDR, IPC_MAX_ADDR);
    	if (!ipcdev.ipc_base)
    		return -ENOMEM;
    
    	ipcdev.i2c_base = ioremap_nocache(IPC_I2C_BASE, IPC_I2C_MAX_ADDR);
    	if (!ipcdev.i2c_base) {
    		iounmap(ipcdev.ipc_base);
    		return -ENOMEM;
    	}
    
    
    	intel_scu_devices_create();
    
    
    	return 0;
    }
    
    /**
     *	ipc_remove	-	remove a bound IPC device
     *	@pdev: PCI device
     *
     *	In practice the SCU is not removable but this function is also
     *	called for each device on a module unload or cleanup which is the
     *	path that will get used.
     *
     *	Free up the mappings and release the PCI resources
     */
    static void ipc_remove(struct pci_dev *pdev)
    {
    	free_irq(pdev->irq, &ipcdev);
    	pci_release_regions(pdev);
    	pci_dev_put(ipcdev.pdev);
    	iounmap(ipcdev.ipc_base);
    	iounmap(ipcdev.i2c_base);
    	ipcdev.pdev = NULL;
    
    	intel_scu_devices_destroy();
    
    }
    
    static const struct pci_device_id pci_ids[] = {
    	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x080e)},
    
    	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x082a)},
    
    	{ 0,}
    };
    MODULE_DEVICE_TABLE(pci, pci_ids);
    
    static struct pci_driver ipc_driver = {
    	.name = "intel_scu_ipc",
    	.id_table = pci_ids,
    	.probe = ipc_probe,
    	.remove = ipc_remove,
    };
    
    
    static int __init intel_scu_ipc_init(void)
    {
    
    	platform = mrst_identify_cpu();
    	if (platform == 0)
    		return -ENODEV;
    
    	return  pci_register_driver(&ipc_driver);
    }
    
    static void __exit intel_scu_ipc_exit(void)
    {
    	pci_unregister_driver(&ipc_driver);
    }
    
    MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
    MODULE_DESCRIPTION("Intel SCU IPC driver");
    MODULE_LICENSE("GPL");
    
    module_init(intel_scu_ipc_init);
    module_exit(intel_scu_ipc_exit);